
Glyphs 3 Handbook

OCTOBER 2021

You are reading the Glyphs Handbook from October 2021 for the

application version 3.0. Please download the latest version of this

handbook at: glyphsapp.com/learn

© 2011–2021 Glyphs GmbH

Written by Rainer Erich Scheichelbauer, Georg Seifert, and

Florian Pircher.

Thanks to Nathalie Dumont, Jeff Kellem, Rob Keller,

Toshi Omagari, and Claus Eggers Sørensen for their

invaluable input.

Glyphs 3 Handbook, October 2021 2

https://glyphsapp.com/learn

Contents

1 Glyphs, 10

1.1 Glyphs Mini, 10

1.2 Community, 10

1.3 Issues, 10

2 Create, 11

3 Preferences, 13

3.1 Updates, 13

3.2 Appearance, 14

3.3 User Settings, 15

3.4 Sample Strings, 16

3.5 Sharing, 17

3.6 Addons, 18

3.6.1 Python version, 18

3.6.2 Console Output, 18

3.6.3 Alternate Plugin

Repositories, 18

3.7 Shortcuts, 20

4 Edit View, 21

4.1 Drawing Paths, 21

4.1.1 Draw Tool, 21

4.1.2 Pencil Tool, 22

4.1.3 Primitives, 23

4.2 Editing Paths, 23

4.2.1 Selecting Nodes

and Paths, 23

4.2.2 Freeform Selections, 24

4.2.3 Moving Selected

Nodes and Paths, 24

4.2.4 Converting Nodes

and Segments, 25

4.2.5 Nodes in

Alignment Zones, 25

4.2.6 Scaling & Rotating, 26

4.2.7 Aligning, 26

4.2.8 Duplicating Paths, 27

4.2.9 Deleting Nodes, 28

4.2.10 Opening and

Closing Paths, 28

4.2.11 Cutting Paths, 29

4.2.12 Resegmenting

Outlines, 29

4.2.13 Controlling Path

Direction, 31

4.2.14 Extremes & Inflections, 31

4.2.15 Duplicate Nodes, 32

4.2.16 Focusing & Locking, 32

4.3 Graphic Attributes, 33

4.3.1 Creating Strokes, 33

4.3.2 Masking, 34

4.4 Anchors, 34

4.4.1 Adding, Editing, and

Removing Anchors, 35

4.4.2 Mark to Base

Positioning, 36

4.4.3 Mark to Mark

Positioning, 36

4.4.4 Cursive Attachment, 36

4.4.5 Ligature Carets, 36

4.4.6 Contextual Mark

Attachment, 37

4.5 Guides, 38

4.5.1 Magnetic Guides, 38

4.5.2 Local & Global Guides, 38

4.5.3 Glyph-Specific

Undo History, 39

4.6 Glyph Info, 40

4.6.1 Horizontal Layout, 40

4.6.2 Vertical Layout, 40

4.7 Glyph Display, 41

4.7.1 Zooming, 41

4.7.2 Panning, 42

4.7.3 View Options, 42

4.7.4 Glyph & Layer Colors, 43

4.8 Background, 44

Glyphs 3 Handbook, October 2021 3

4.9 Entering Text, 44

4.9.1 Text Preview, 45

4.9.2 Sample Strings, 46

4.9.3 Text Tool, 46

4.9.4 Writing Direction, 47

4.10 Measuring, 47

4.10.1 Info box, 47

4.10.2 Measurement Tool, 48

4.10.3 Measurement Guides, 50

4.10.4 Measurement Line, 51

4.11 Annotating, 52

4.11.1 Annotation Cursor, 52

4.11.2 Annotation Text, 52

4.11.3 Annotation Arrow, 53

4.11.4 Annotation Circle, 53

4.11.5 Plus & Minus

Annotations, 53

4.12 Images, 54

4.12.1 Adding Images, 54

4.12.2 Manipulating Images, 54

4.13 Previewing & Testing, 55

4.13.1 Previewing Kerning, 55

4.13.2 Previewing Masters, 55

4.13.3 Previewing

OpenType Features, 55

4.13.4 Previewing

Interpolated Instances, 56

4.13.5 Previewing in macOS, 57

4.13.6 Previewing in

Adobe Applications, 58

4.13.7 Previewing in Web

Browsers, 58

5 Palette, 60

5.1 Dimensions, 60

5.2 Fit Curve, 60

5.3 Layers, 61

5.3.1 Master Layers, 61

5.3.2 Backup Layers, 61

5.3.3 Special Layers, 62

5.4 Transformations, 62

5.4.1 Transformation Origin, 63

5.4.2 Mirroring, 63

5.4.3 Scaling, 64

5.4.4 Rotating and Slanting, 64

5.4.5 Aligning, 64

5.4.6 Boolean Operations, 64

6 Filters, 66

6.1 Applying Filters, 66

6.1.1 Filter Menu, 66

6.1.2 Filters as Custom

Parameters, 66

6.2 Built-In Filters, 68

6.2.1 Shape Order, 68

6.2.2 Extrude, 69

6.2.3 Hatch Outline, 69

6.2.4 Offset Curve, 70

6.2.5 Roughen, 72

6.2.6 Round Corners, 72

6.2.7 Rounded Font, 73

6.2.8 Transformations, 73

6.2.9 Add Extremes, 76

6.2.10 Remove Overlap, 76

6.2.11 Third-Party Filters, 76

7 Font View, 77

7.1 Viewing Glyphs, 77

7.1.1 Grid View, 77

7.1.2 List View, 78

7.2 Managing the

Glyph Set, 78

7.2.1 Adding New Glyphs, 78

7.2.2 Copying Glyphs

Between Files, 80

7.2.3 Removing Glyphs, 81

7.3 Glyph Properties, 82

7.3.1 Glyph Name, 82

7.3.2 Metrics, 83

7.3.3 Kerning Groups, 83

7.3.4 Exports, 83

7.3.5 Color Label, 83

7.3.6 Tags, 84

7.3.7 Unicode, 84

Glyphs 3 Handbook, October 2021 4

7.3.8 Production Name, 85

7.3.9 Script, 86

7.3.10 Category &

Subcategory, 86

7.3.11 Case, 86

7.3.12 Writing Direction, 86

7.3.13 Sort Name, 86

7.3.14 ID, 87

7.3.15 Char, 87

7.3.16 Note, 87

7.3.17 Components, 87

7.3.18 Last Changed, 87

7.4 Batch-Processing, 87

7.4.1 Selecting Glyphs, 88

7.4.2 Batch Commands, 88

7.4.3 Batch-

Renaming Glyphs, 89

7.4.4 Filters, 90

7.4.5 Palette, 90

7.4.6 Plug-ins & Scripts, 90

7.5 Filtering & Sorting, 90

7.5.1 Search Field, 90

7.5.2 Categories, 91

7.5.3 Languages, 91

7.5.4 Smart Filters, 92

7.5.5 List Filters, 94

7.5.6 Manage Filters, 95

7.5.7 Custom Categories

& Languages, 95

7.5.8 Glyphs Order, 95

7.6 Names and Unicode, 96

7.6.1 Glyph Info Database, 96

7.6.2 Naming Glyphs, 97

7.6.3 Glyph Naming Rules, 97

7.6.4 Copy Glyph Names, 99

7.6.5 Renaming Glyphs, 100

7.6.6 CID Mapping, 100

7.7 Images, 101

8 Font Info, 102

8.1 Font, 102

8.1.1 Family Name, 102

8.1.2 Units per Em, 103

8.1.3 Version, 104

8.1.4 Date, 104

8.1.5 Designer &

Designer URL, 104

8.1.6 Manufacturer &

Manufacturer URL, 105

8.1.7 Copyright, 105

8.1.8 License &

License URL, 105

8.1.9 Trademark, 105

8.1.10 Description, 105

8.1.11 Sample Texts, 105

8.1.12 Axes, 106

8.1.13 Custom Parameters, 106

8.2 Masters, 106

8.2.1 Managing Masters, 106

8.2.2 General, 107

8.2.3 Axes Coordinates, 107

8.2.4 Metrics &

Alignment Zones, 108

8.2.5 Stems, 109

8.2.6 Custom Parameters, 110

8.2.7 Number Values, 110

8.3 Exports, 110

8.3.1 Active, 111

8.3.2 Style Name, 111

8.3.3 Weight & Width, 112

8.3.4 Axes Coordinates, 112

8.3.5 Style Linking, 113

8.3.6 Custom Parameters, 114

8.4 Features, 114

8.4.1 OpenType

Feature Code, 114

8.4.2 Automatic

Feature Code, 115

8.4.3 Manual Feature Code, 116

8.4.4 Tokens, 117

8.4.5 Conditional

Feature Code, 120

8.4.6 Naming Stylistic Sets, 121

8.4.7 Implicit Features, 121

Glyphs 3 Handbook, October 2021 5

8.4.8 Export-Specific

Features, 122

8.5 Other Settings, 122

8.5.1 Grid Spacing &

Subdivision, 122

8.5.2 Keyboard Increments, 123

8.5.3 Use Custom Naming, 123

8.5.4 Disable Automatic

Alignment, 124

8.5.5 Keep Alternates

Next to Base Glyph, 124

8.5.6 File Format Version, 124

8.6 Notes, 124

9 Reusing Shapes, 126

9.1 Components, 126

9.1.1 Building Composites, 126

9.1.2 Turning Paths into

Components, 127

9.1.3 Recipes, 127

9.1.4 Editing Components, 128

9.1.5 Moving between

Base Glyphs and

Composites, 128

9.1.6 Component

Placeholders, 129

9.1.7 Anchors, 129

9.1.8 Automatic Alignment, 130

9.1.9 Locking Components, 132

9.1.10 Decomposing, 133

9.1.11 Combining Paths

and Components, 133

9.1.12 Nesting Components, 133

9.1.13 Preferred Marks for

Glyph Composition, 134

9.1.14 Underscore

Components, 134

9.2 Smart Components, 134

9.2.1 Setting up Smart

Glyphs, 135

9.2.2 Using Smart

Components, 137

9.2.3 Width & Height

Properties, 137

9.2.4 Smart Handles, 137

9.3 Corner Components, 138

9.3.1 Creating Corner

Glyphs, 138

9.3.2 Using Corner

Components, 138

9.3.3 Extra Nodes, 139

9.4 Cap Components, 140

9.4.1 Creating Cap Glyphs, 140

9.4.2 Using Cap

Components, 140

9.5 Segment Components, 141

9.5.1 Creating Segment

Glyphs, 141

9.5.2 Using Segment

Components, 141

9.6 Brushes, 142

9.6.1 Creating Brush

Glyphs, 142

9.6.2 Using Brushes, 142

9.7 Pixel Tool, 143

9.7.1 Setup, 143

9.7.2 Drawing Pixels, 143

9.7.3 Pixel Shape, 144

10 Spacing & Kerning, 145

10.1 Spacing, 145

10.1.1 Info box, 145

10.1.2 Spacing Shortcuts, 146

10.1.3 Metrics Keys, 146

10.1.4 Metrics Keys and

Automatic Alignment, 148

10.2 Kerning, 148

10.2.1 Kerning Modes, 149

10.2.2 Info box, 149

10.2.3 Kerning Shortcuts, 149

10.2.4 Kerning Groups, 150

10.2.5 Kerning Group

Exceptions, 151

10.2.6 Kerning Window, 151

Glyphs 3 Handbook, October 2021 6

10.2.7 Manual Kerning Code, 153

11 PostScript Hinting, 155

11.1 Font-Wide Hints, 156

11.1.1 Standard Stems, 156

11.1.2 Alignment Zones, 157

11.1.3 Custom Parameters, 159

11.2 Autohinting, 159

11.2.1 Flex Hints, 159

11.3 Manual hinting, 160

11.3.1 Stem Hints, 161

11.3.2 Ghost Hints, 162

11.3.3 Hinting Multiple

Masters, 163

12 TrueType Hinting, 164

12.1 Autohinting, 164

12.2 Font-level Hints, 165

12.2.1 TrueType Zones, 165

12.2.2 TrueType Stems, 168

12.2.3 TrueType BlueFuzz, 169

12.3 Glyph-level Hints, 169

12.3.1 Hinting Outlines, 170

12.3.2 Pixel Size, 171

12.3.3 Hint Direction, 171

12.3.4 Hint Order, 171

12.3.5 Show Point Indexes, 172

12.3.6 Hinting Preview, 172

12.3.7 Web Preview, 172

12.4 Instructions, 173

12.4.1 Snap (A), 173

12.4.2 Stem (S), 174

12.4.3 Shift (F), 177

12.4.4 Interpolate (G), 179

12.4.5 Delta (E), 180

12.4.6 Points in

Overlapping

Intersections, 180

12.5 Advanced TrueType

Hinting, 181

13 Interpolation, 184

13.1 Interpolation

Applications, 185

13.2 Setting up Axes, 186

13.3 Setting up Masters, 186

13.3.1 Axes Coordinates, 187

13.3.2 Minimal Multiple

Masters Setup, 187

13.3.3 Elaborate Multiple

Masters Setups, 188

13.4 Setting up Instances, 188

13.4.1 Static Instances, 189

13.4.2 Variable Font Settings, 189

13.5 Outline Compatibility, 189

13.5.1 Identifying

Incompatible

Outlines, 190

13.5.2 Correcting Path

Direction, 190

13.5.3 Reordering Shapes, 190

13.5.4 Master Compatibility, 190

13.6 Intermediate Layers, 192

13.6.1 Intermediate

Layer Setup, 193

13.6.2 Virtual Masters, 193

13.7 Switching Shapes, 194

13.7.1 Alternate Layers, 194

13.7.2 Replacing Glyphs at

Export, 195

13.7.3 Conditional Glyph

Substitutions, 196

13.8 Editing Multiple

Masters, 196

13.8.1 Select All Layers Tool, 196

13.8.2 Show All Masters, 197

13.8.3 Keep Layer

Selection in Sync, 197

13.9 Working with

Multiple Fonts, 197

13.9.1 Grouping Fonts into

Families, 197

Glyphs 3 Handbook, October 2021 7

13.9.2 Glyphs Files,

Masters, & Instances, 198

13.9.3 Compare Fonts, 198

13.10 Variable Font Options, 198

13.10.1 Variable Font Origin, 199

13.10.2 Axis Location, 199

13.10.3 Axis Mappings, 200

13.10.4 Style Attributes Table, 202

14 Color Fonts, 203

14.1 Working with

Color Fonts, 203

14.1.1 Keeping the Metrics

in Sync, 203

14.1.2 Previewing

Color Fonts, 203

14.1.3 Exporting

Color Fonts, 203

14.2 Layered Color Fonts, 204

14.2.1 Initial Setup, 204

14.2.2 Editing Color Layers, 205

14.2.3 Exporting, 205

14.3 CPAL/COLR Fonts, 205

14.3.1 Defining the Color

Palette, 206

14.3.2 Master Layer as

Fallback, 206

14.3.3 Color Palette Layers, 206

14.3.4 Exporting, 207

14.4 sbix Fonts, 208

14.4.1 Standard Bitmap

Graphics, 208

14.4.2 Preparing Images, 208

14.4.3 Adding Images to

Glyphs, 209

14.4.4 Exporting, 210

14.5 SVG Color Fonts, 210

14.5.1 Converting to SVG, 211

14.5.2 Importing Existing

SVG Files, 211

14.5.3 Creating SVG Glyphs, 211

15 Import & Export, 214

15.1 Exporting Font Files, 214

15.1.1 OpenType Export, 214

15.1.2 Variable Fonts Export, 216

15.1.3 UFO Export, 217

15.1.4 Metrics Export, 218

15.2 Source Formats, 218

15.2.1 Glyphs File, 218

15.2.2 Glyphs File Package, 219

15.2.3 Unified Font Object, 219

15.3 Opening Font Files, 220

15.3.1 Font File Importing

Behaviors, 220

15.3.2 Opening

TrueType Font, 221

15.3.3 Importing Multiple

Fonts Files into a

Glyphs File, 221

15.3.4 Importing

OpenType Features, 221

15.3.5 Importing

PostScript Hints, 221

15.4 Importing Font Data, 221

15.4.1 Importing Outlines, 221

15.4.2 Importing Metrics, 222

15.4.3 Importing

Feature Files, 223

15.5 Vector Drawing

Applications, 223

15.5.1 Adobe Illustrator, 224

15.5.2 Affinity Designer, 224

15.5.3 Sketch, 224

15.6 File Format

Interoperability, 224

15.7 Projects, 225

15.7.1 Setting up a Project, 225

15.7.2 Exporting a Project, 226

16 Extensions, 227

16.1 Plugin Manager, 227

16.2 Scripts, 228

16.2.1 Run Scripts, 228

Glyphs 3 Handbook, October 2021 8

16.2.2 The Scripts Folder, 228

16.2.3 Creating Scripts, 229

16.3 Plug-ins, 229

16.3.1 Installing Plug-ins, 230

16.3.2 Creating Plug-ins, 230

17 Appendix, 232

17.1 Regular Expressions, 232

17.2 Custom Feature

Code Snippets, 233

17.3 Automatic Feature

Generation, 234

17.4 Custom Parameters, 239

Glyphs 3 Handbook, October 2021 9

1 Glyphs

Glyphs 3 is a professional Mac application for creating OpenType

fonts. It allows you to draw, edit and test letter shapes in a word

context, and helps you manage all aspects of modern font

production, including the efficient reuse of recurring shapes and

the creation of large font families. You can extend the

functionality of Glyphs with plug-ins and Python scripts, a large

number of which is freely available and accessible from within the

application.

1.1 GLYPHS MINI

As an alternative to the pro version, there is a slimmed-down and

more affordable variant of the app available, named Glyphs Mini.

It lacks some features of the pro app, primarily interpolation and

extensibility, and has a smaller range of export formats. The

Glyphs Mini handbook is available from glyphsapp.com/learn.

1.2 COMMUNITY

Glyphs is also a vibrant community. On our website

glyphsapp.com, you will find multiple ways to engage. In the

Forum, we encourage you to ask questions and discuss issues

with other users and the developers. Find a large collection of

tutorials, screencasts, online classes and more educational

material in the Learn section. Look for workshops, conferences,

and the latest updates in News. If you are planning a workshop,

organizing a Glyphs-related event, or releasing a plug-in you

developed, we will be happy to share your contribution on

glyphsapp.com.

1.3 ISSUES

Should the application crash, submitting the crash report dialog,

that appears the next time the app starts, will enable us to

address the issue that caused the crash. If you can, please

describe steps for reliably reproducing the issue in the forum.

However, the most likely reason for a crash is a faulty interaction

with a plug-in. You can disable extensions if you hold down the

Option and Shift keys while the app starts.

An issue you encounter may already be fixed in the latest beta

version of the app. See section 3.1, ‘Updates’ (p. 13) for details.

Glyphs 3 Handbook, October 2021 10

https://glyphsapp.com/learn
https://glyphsapp.com
https://glyphsapp.com

2 Create

Glyphs shows the Start Window when opened without

documents: The right side contains information about the Glyphs

version and links to the Glyphs website. Uncheck Show window

on startup to hide the window on future launches.

The left side shows a list of recently opened documents.

Double-click a document to open it. Open the Start Window

anytime from the menu bar: Window → Start Window.

Tip: Control-click or

right-click a document and

choose Show in Finder from

the context menu to reveal

the file in Finder.

Click the plus button to create a new Glyphs document. The

Start Window then lists a set of scripts. These scripts are also

shown when there are no recent files.

Click a script and include it in the new document by switching

No to Yes in the top right of the window. Included scripts are

Glyphs 3 Handbook, October 2021 11

shown with a colorful icon in the list. Customize the included

glyphs by toggling the respective checkboxes on the right side.

Search for scripts by name with the search field located in the top

right of the window.

Create a document containing empty glyphs for all selected

scripts with the Create Document button in the bottom right:

Save the document with File → Save (Cmd-S). Name the file and

pick a folder where it is should be saved. Glyphs offers three file

format options.A Glyphs document can be

changed to a different file

format at any time with File →

Save As… (Cmd-Shift-S).

See section 15.2, ‘Source Formats’ (p. 218) for

details or pick the default ‘Glyphs File’ for a start.

Create a new document anytime with File → New from Glyph

Sets… The list will remember the previous selection of scripts and

glyph sets. Quickly create a new document with the basic ASCII

glyphs by choosing File → New (Cmd-N).

See the Getting Started tutorials on the Glyphs website¹ for an

introduction to working with Glyphs.

1 glyphsapp.com/learn/recommendation:get-started

Create Glyphs 3 Handbook, October 2021 12

https://glyphsapp.com/learn/recommendation:get-started
https://glyphsapp.com/learn/recommendation:get-started

3 Preferences

Choose Glyphs → Preferences… from the menu bar (or press

Cmd-Comma) to open the preferences window.

3.1 UPDATES

The Updates section controls how Glyphs is updated. Check for a

new version of Glyphs by clicking on the Check Now button. If

one is available, Glyphs will offer to download the latest release

and show a list of the new additions and changes.

Automatically check for updates will look periodically for new

updates. We recommend keeping this option enabled.

Choose Show cutting edge versions to download beta versions

of Glyphs. Beta versions are released frequently, providing

bug fixes and early feature releases. Because of the high

frequency, beta versions are not as thoroughly tested as release

versions. Therefore, we recommend working with copies of font

files when trying a Glyphs beta. Revert to the latest stable Glyphs

version by re-downloading it from glyphsapp.com/buy.

Downloading a new version or reverting to an old version of

Glyphs will not reset the application preferences.

Glyphs 3 Handbook, October 2021 13

https://glyphsapp.com/buy

3.2 APPEARANCE

The Appearance section defines the visual appearance of

Font View and Edit View.

Display Unicode Value controls whether glyphs with Unicode

values show a simplified Unicode icon or display the codepoint in

the bottom right of the glyph cell.

Always use Light Mode is available for both Font View and

Edit View. These options allow Glyphs to run using the dark

appearance of the system (configurable from System Preferences)

while still displaying the window content with a light appearance.

Text ViewWidth controls the line length of text in Edit View.

The value is measured in thousandths of an em. It is independent

of the units per em (UPM) of the font.

Handle size controls the size of the points, such as on-curve

nodes, control handles, and anchors. Smaller sizes present a

cleaner user interface; larger sizes are easier to see and

click-select.

Display Mark Cloud shows a superimposition of the

combining marks of a glyph. A ‘mark cloud’ appears for all glyphs

when an anchor is selected. The glyph info database defines the

marks shown for a glyph and its anchors. (See section 7.6.1, ‘Glyph

Info Database’ (p. 96) for more on the glyph info database.)

Disable this option to suppress the display of mark clouds.

Preferences Glyphs 3 Handbook, October 2021 14

Various colors used can be configured for both the light and

the dark system appearance. Available customization options are

the color of corner nodes , smooth nodes , alignment zones

, the color of strokes on the foreground layer , the

background layer , and other layers (made visible by clicking

on the eye / icon in the layers list), the color of the Edit View

canvas, and the kerning indicator colors (by default light blue

for negative kerning and yellow for positive kerning). Clicking

the Standard button resets all colors to their default values.

3.3 USER SETTINGS

Keep Glyph Names from Imported Files maintains the names of

the glyphs when opening a file in Glyphs instead of forcing the

default naming scheme. This option is useful for workflows that

rely on a particular naming scheme, such as exchanging files with

other apps.

Disable Automatic Alignment for Imported Files disables the

automatic positioning for all components when importing a font.

For more details on automatic alignment, see section 9.1.8,

‘Automatic Alignment’ (p. 130).

Disable Localization keeps the user interface language of

Glyphs in English, rather than the localization set in System

Preferences. Glyphs needs to be restarted after toggling this

option for the change to take effect.

Use Versions employs the Versions file saving method.

Versions automatically saves files when closing a document and

allows browsing previous versions of the file. Enable this option

to match the behavior of other Mac apps like Pages or disable it

to prevent autosave modifications when opening and

closing a file.

Preferences Glyphs 3 Handbook, October 2021 15

3.4 SAMPLE STRINGS

The Sample Strings preference stores short pieces of

text—sample strings—that can quickly be inserted into Edit View

to review and edit glyphs. Sample strings are organized into

groups. Click the plus button to add a group, and click the

minus button to delete the selected group.

Each sample string is written on a separate line in the text field

to the right. The text field is Unicode savvy and accepts all

diacritic marks and non-ASCII characters. Write \n (a backslash

followed by a lowercase n) to include a line break in a sample

string. Specify a glyph by typing its character or writing / (a

forward slash) followed by the glyph name and a space character.

The slash and glyph name is useful for glyphs without a Unicode

value or glyphs that are difficult to type. If multiple glyph names

follow each other, the space character may be omitted. Use

/Placeholder to insert a glyph that mirrors the currently

selected glyph.

So, to write ‘¡Hola’ followed by a placeholder glyph, ‘!’, then a

new line, and the text ‘second line’ write the following line of text

into the field:

/exclamdown Hola /Placeholder/exclam\nsecond line

Click the Default button to reset all sample strings to the default

values and delete all custom groups.

See section 4.9.2, ‘Sample Strings’ (p. 46) to find out more

about the use of sample strings.

Preferences Glyphs 3 Handbook, October 2021 16

3.5 SHARING

Glyphs can stream the current Edit View to a second display such

as an iPhone, iPad, or iPod Touch. Choose Enable External

Preview and download the Glyphs Viewer app from the

App Store.¹

The Mac running Glyphs and the iOS device need to be

connected to the same network. Open the iOS app and select the

Mac with which to connect. On the selected Mac, Glyphs will ask

to confirm the connection. Tap and hold anywhere on the app to

return to its menu.

Glyphs Viewer displays the active Edit View. Pinch to zoom

with two fingers and pan around with a single finger gesture. Any

change made to the glyphs is reflected immediately on the

iOS device.

If the Glyphs Viewer app cannot find the Mac, make sure both

the Mac and the iOS device are connected to the same wireless

network. If the problem persists, restart both devices and try

again. If they still cannot connect, try using a different network,

or correct the router settings. If the Mac and the iOS device

communicate to the router with different wireless standards,

Glyphs Viewer cannot connect to the Mac. This issue can happen

if the router is set up to simultaneously use multiple modulation

standards (for example, g and n). Setting the router to either

802.11 g only or 802.11 n only may help in such cases. Once a

connection has been established, a Reset button is added to the

Sharing preferences, which resets the list of trusted devices.

1 appstore.com/schriftgestaltungde/glyphsviewer, or search for ‘Glyphs Viewer’

Preferences Glyphs 3 Handbook, October 2021 17

https://appstore.com/schriftgestaltungde/glyphsviewer
https://appstore.com/schriftgestaltungde/glyphsviewer
https://appstore.com/schriftgestaltungde/glyphsviewer

3.6 ADDONS

Glyphs can be extended with plug-ins, scripts, and modules. The

Addons preferences control how these extensions work and

which extensions are available.

3.6.1 Python version

Python is a programming

language popular among

type designers and

font engineers. The Python

language is under active

development, and new

versions with new features are

released regularly. Some

plug-ins or scripts may require

a specific Python version.

Most Glyphs plug-ins and scripts require Python. Select the

version of Python that Glyphs should use for plug-ins and scripts

from the Python version field. Note that Glyphs requires Python

version 3 or later.

If no Python version is selected or the currently selected

version does not work with the installed scripts and plug-ins, go

to the menu bar and choose Window → Plugin Manager →
Modules and install Python. Switch back to the preferences

window and choose the Python version labeled ‘(Glyphs)’.

Relaunch Glyphs for the Python version change to take effect.

3.6.2 Console Output

Use system console for script output directs the log output of

plug-ins and scripts to the system console instead of the Macro

Panel console (Window →Macro Panel, Cmd-Opt-M). Select this

option for debugging a plug-in or script when the Macro Panel is

inaccessible.

3.6.3 Alternate Plugin Repositories

A plug-in repository defines a set of plug-ins, scripts, and

modules that can be installed from the Plugin Manager. In

Glyphs, there is a main plug-in repository that is accessible to all

Glyphs users. It provides some of the most popular Glyphs

plug-ins, scripts, and modules.

Preferences Glyphs 3 Handbook, October 2021 18

Glyphs supports alternate

plug-in repository URLs with

HTTP Basic authentication

over HTTPS, which requires a

username and password to

access the repository.

Local repositories are

supported by adding the full

file path instead of an URL to

the text field.

Define alternate plug-in repositories in conjunction with the

main repository by adding URLs pointing to plug-in repositories

in the Alternate Plugin Repos text field, one URL per line.

Alternate plug-in repositories are helpful to distribute preview

versions of extensions or for private scripts and plug-ins shared

within a company.

For the file structure, reference the main plug-in repository.² A

repository definition file must follow this structure:

{

packages = {

plugins = (

{

titles = {

en = "Some Plugin";

};

url = "https://github.com/example/plugin";

path = "Some Plugin.glyphsPlugin";

descriptions = {

en = "A description of the plugin.";

};

screenshot = "https://example.org/image.png";

},

...

);

scripts = (...);

modules = (...);

};

}

See the main plug-in repository for all available fields. Only the

lists currently in use must be specified. For example, when only

distributing scripts, the plugins and modules values may

be left off.

The titles and descriptions fields can offer multiple

languages. See the package index website³ for a list of language

codes. Glyphs requests the screenshot URL with an

Accept-Language HTTP header, allowing the server to respond

with a localized screenshot.

2 github.com/schriftgestalt/glyphs-packages/blob/glyphs3/packages.plist

3 github.com/schriftgestalt/glyphs-packages

Preferences Glyphs 3 Handbook, October 2021 19

https://github.com/schriftgestalt/glyphs-packages/blob/glyphs3/packages.plist
https://github.com/schriftgestalt/glyphs-packages
https://github.com/schriftgestalt/glyphs-packages/blob/glyphs3/packages.plist
https://github.com/schriftgestalt/glyphs-packages

3.7 SHORTCUTS

The Shortcuts preferences allow recording keyboard shortcuts for

frequently used actions. Invoke a shortcut by pressing one or

more modifier keys (⌘Command, ⌥Option, ⌃Control, ⇧ Shift)

and a regular key like A, 5, Return, or Escape.

Click Record shortcut and press a shortcut on the keyboard to

add the shortcut to the selected action. Keep the current shortcut

by clicking the curved arrow icon or click the cross icon to

remove the current shortcut from an action:

New from Glyph Sets… Type shortcut

Shortcuts are shown using key symbols:

New from Glyph Sets… ⌥⌘N

Use the buttons at the top of the Shortcuts preferences window

to filter the actions list. All shows all actions, Customized lists

only the actions with a changed shortcut, Menu shows all actions

accessible from the menu bar at the top of the screen, and

Commands shows actions within the current selection.

Actions are grouped into sections. Click the disclosure

chevron next to the title of a section to collapse and expand

the section. Filter the list of actions further by searching for

actions with the search field in the top right.

Preferences Glyphs 3 Handbook, October 2021 20

4 Edit View

Edit glyph outlines, spacing, kerning, mark-positioning, hinting,

and more in Edit View. Edit a glyph by double-clicking it. Open

multiple glyphs in Edit View by selecting them and choosing

View → New Tab (Cmd-T). In Font View, a selection of glyphs can

also be edited by double-clicking the selection or pressing

Cmd-Down Arrow.

A Glyphs window can contain multiple Edit View tabs. Switch

to a tab by clicking its tab title. Press Cmd-Opt-2 through

Cmd-Opt-9 to switch to the respective tab. Cmd-Opt-1 switches

to Font View (see p. 77), which is always the first tab in

the window.

Switch to the next or previous tab with View → Navigation →
Show Next Tab (Ctrl-Tab) or Show Previous Tab (Ctrl-Shift-Tab).

Close a tab by moving the mouse cursor over its title and clicking

the close button or choosing View → Close Tab (Cmd-Shift-W).

Close all tabs except for the current one by holding down the

Option key when clicking the close button. Restore an

accidentally closed tab by holding down Option and choosing

View → Reopen Last Closed Tab (Cmd-Opt-Shift-W).

Edit View has two modes: text mode and edit mode.

Use text mode to insert and remove glyphs from Edit View or

adjust the spacing and kerning between glyphs. Choose the Text

tool (shortcut T) to enter text mode. See section 4.9, ‘Entering

Text’ (p. 44) and chapter 10, ‘Spacing & Kerning’ (p. 145) for

more details.

Enter edit mode by choosing a different tool or by

double-clicking a glyph. Or, press the Escape key to edit the

glyph located after the text cursor.

4.1 DRAWING PATHS

4.1.1 Draw Tool

Draw outlines with the Draw tool (shortcut P as in ‘Pen’ or

‘Path’). Click anywhere on the canvas to place a node. Placing

multiple nodes connects them to a path.

Click and drag to create a curved path segment. Dragging

extends two handles from the placed node. The length of the

handles controls the curvature of the segment. Hold down the

Option key to change the handle of the next segment only and

Glyphs 3 Handbook, October 2021 21

keep the handle of the previous segment as it is. Hold down the

Command key while dragging to change the length of only the

next handle while keeping both handles at the same angle. When

dragging, hold down the Space bar to reposition the node. Click

on the first node of a path to close the path.

This handbook uses the term

node to refer to on-curve

points, handle for off-curve

points, and point as an

umbrella word for both types.

A node can either be a smooth node or a corner node .

Smooth nodes always keep both of their handles in a straight line.

They appear round and green. Corner nodes appear square and

blue. Their handles may form a straight line, but they can also

form any non-smooth corner. The size and colors of nodes are

configurable in the preferences (see section 3.2,

‘Appearance’, p. 14).

Handles (also called Bézier control points or off-curve points)

control the curvature of their path segment. They are displayed

as small circles and connected to their node with a thin gray line.

In open paths, start and end points are displayed as short

perpendicular blue lines. The start point also features a blue

triangle, indicating the path direction. Points are stored in path

direction order which is significant for some path operations. See

section 4.2.13, ‘Controlling Path Direction’ (p. 31) and chapter 9,

‘Reusing Shapes’ (p. 126).

Toggle the display of nodes with View → Show Nodes → In
Foreground (Cmd-Shift-N).

4.1.2 Pencil Tool

The Pencil tool (shortcut B) offers a quick way to draw freehand

curves, especially when using a drawing tablet. This includes

drawing with Apple Pencil on an iPad using Sidecar. The resulting

paths will need some cleaning up (see section 4.2, ‘Editing Paths’,

p. 23) because Pencil paths usually contain too many nodes in an

attempt to reproduce the pencil drawing faithfully.

Edit View Glyphs 3 Handbook, October 2021 22

4.1.3 Primitives

Glyphs offers rectangles and ellipses as built-in primitive shapes.

Click the Primitives tool / or press F to activate it. Click

and hold the Primitives tool icon or press Shift-F to switch

between the two shape options. Alternatively, use Draw Circle or

Draw Rectangle from the context menu to switch between the

two modes.

Click once on the canvas to create a primitive by entering its

measurements with the keyboard. Click and drag to draw it

directly into the edit area. Hold down Shift for a perfect square or

circle. Hold down Option to draw from the center of the shape.

4.2 EDITING PATHS

4.2.1 Selecting Nodes and Paths

Click and drag with the Select tool (shortcut V) to select nodes

and handles inside a rectangular selection area. Hold down the

Option key to ignore the handles and only select on-curve nodes.

While dragging a selection, hold down the Control key to change

the selection angle. Release Control to resize the selection at its

current angle. Slanted selections are particularly helpful for

italic designs.

Click a point or a segment to select it. Hold down the Shift key

to extend or reduce the selection. Double-click near an outline

segment to select the complete path. Choose Edit → Invert
Selection (Cmd-Opt-Shift-I) to select all unselected points or

Edit → Deselect All (Cmd-Opt-A) to cancel the selection. Handles

can be selected independently from the nodes. Shift-select

handles to create a non-contiguous selection. When a single node

Edit View Glyphs 3 Handbook, October 2021 23

or handle is selected, press the Tab key to select the following

point on the path or Shift-Tab to select the previous point.

4.2.2 Freeform Selections

Use the Lasso tool (shortcut V or Shift-V) to draw a

non-rectangular selection. This is particularly useful for glyphs

with many points where a rectangular selection would not be

precise enough.

Activate the Lasso tool when it is not displayed in the toolbar

by clicking and holding the Select tool and choosing Lasso

Select from the menu. Alternatively, press Shift-V until the Lasso

tool icon is shown.

4.2.3 Moving Selected Nodes and Paths

Move the selection using the mouse or the arrow keys. Moving

nodes will move the attached handles, even if they are not

selected. Hold down Shift for increments of 10, and Command for

increments of 100. Hold down Option to move only the selected

points and not the attached handles. While moving one or more

nodes, hold down both Control and Option (or add Option after

starting to drag) to ‘nudge’ them, that is, to proportionally adjust

the surrounding unselected handles at the same time.

Left: Original glyph outline

with two selected nodes.

Center: Move selected nodes,

handles stay the same.

Right: Nudge selected nodes,

handles are adjusted.

Move a handle by dragging it with the mouse or pressing the

arrow keys. If multiple handles are selected, they all move

simultaneously. Moving one or more handles while holding down

the Option key preserves their angles. When using the keyboard,

Edit View Glyphs 3 Handbook, October 2021 24

add the Shift key for increments of 10 or the Command key for

increments of 100.

While moving a handle of a smooth node, hold down

Control and Option simultaneously to reproduce the length and

angle of that handle to its matching one on the other side

of the node.

Drag a segment to move both connected nodes and their

handles. Option-drag a segment to change the length of the

handles but keep their respective angles.

4.2.4 Converting Nodes and Segments

Convert between smooth connections and corners by

double-clicking a node or selecting one or more nodes and

pressing Return.

Be careful when tidying up

paths: In Multiple Master

setups, superfluous points

may be necessary for outline

compatibility.

The Path → Tidy up Paths command (Cmd-Shift-T) applies

heuristics to set the appropriate mode for all nodes at once or a

selection of nodes. It also removes superfluous points, for

example, handles on a straight segment or an on-curve point

exactly on the line between two others. Hold down Option to

choose Path → Tidy up Paths for all Masters (Cmd-Opt-Shift-T),

applying the command on all masters of the selected glyphs.

Option-clicking a line segment converts it into a curve

segment, and handles are added to the two bounding nodes.

Convert a curve back into a line segment by selecting and

deleting one or both of its handles.

4.2.5 Nodes in Alignment Zones

Nodes located exactly on a vertical metric line (see section 8.2,

‘Masters’, p. 106) are highlighted with a beige diamond . Inside

an alignment zone, the highlighting assumes the shape of a

Edit View Glyphs 3 Handbook, October 2021 25

circle . This helps to control the position of nodes even at small

zoom scales.

4.2.6 Scaling & Rotating

The attributes of the current node selection are shown in the

Info box (View → Show Info, Cmd-Shift-I):

Tip: In all number input fields

in Glyphs, use the up and

down arrow keys to increase

or decrease the value. When multiple nodes are selected, scale and move the selection

by changing the coordinates (X and Y) and the dimensions

(�width and�height) in the Info box. Set the transformation

origin with the reference points on the left. Close the lock

symbol to scale width and height proportionally. Open the

lock to scale width and height independently from each other.

Use the Up and Down arrow keys to step through the numbers.

Hold down Shift for increments of 10.

When multiple points are selected, the solid square

indicates the number of selected points. The number next to the

outlined square represents the total number of points on the

current glyph layer.

Rotate and scale the selection manually with the Rotate tool

(shortcut R) and the Scale tool (shortcut S). With one of these

tools active, click anywhere on the canvas to set the

transformation origin and then click and drag to transform the

current selection. Hold down the Shift key to rotate in steps of

90° or to scale proportionally.

When multiple nodes are selected, a bounding box is displayed

with transformation knobs on all four sides and corners. Drag a

knob to scale the selected points with respect to the opposite

knob. Hold down Shift to scale proportionally and hold down

Option to use the center of the box as the transformation origin.

Toggle the display of the bounding box with View → Show
Bounding Box (Cmd-Opt-Shift-B). More path transformations are

possible via the Palette. See section 5.4, ‘Transformations’ (p. 62)

for further details.

4.2.7 Aligning

Choose Path → Align Selection (Cmd-Shift-A) to quickly align all

selected points. The command aligns both nodes and handles.

Glyphs will automatically choose between horizontal and vertical

Edit View Glyphs 3 Handbook, October 2021 26

alignment, whichever is smaller for the current selection. The

Align Selection command respects the transformation origin of

the transformation palette (see also section 5.4.1, ‘Transformation

Origin’, p. 63):

Align Selection for different

transformation origins.

Alternatively, set the width or the height value of two or more

selected points to zero in the Info box. Align an anchor

horizontally above a point with the Align Selection command

while exactly one anchor and one path point are selected, or

center an anchor between two points while two points and one

anchor are selected. Glyphs respects the italic angle when

aligning anchors to nodes.

Using the Align Selection command while exactly one point

and one component are selected will align the origin point of the

component to the selected node. The node keeps its position.

The origin point is where the baseline crosses the left sidebearing

if the italic angle is zero. If the component glyph contains an

‘origin’ anchor, its position is used as the origin point instead.

If the italic angle is not zero,

instead of the left sidebearing,

an imaginary vertical line

crossing the slanted LSB at

half x-height is used. In that

case, the origin point is where

this line crosses the baseline.

Applying Path → Align Selection on a single node will try to

move the node over the nearest node in the background. Align

partial paths, complete paths, or components to each other using

the Transformations section in the Palette (Cmd-Opt-P). See

section 5.4, ‘Transformations’ (p. 62) for more details.

4.2.8 Duplicating Paths

Quickly duplicate the current selection by holding down Option

while dragging a copy of the paths into their new position.

Alternatively, copy (Cmd-C) and paste (Cmd-V) the selection.

Option-dragging partial paths will duplicate the selected

segments. This can be helpful when replicating glyph parts like

serifs or spurs.

Edit View Glyphs 3 Handbook, October 2021 27

4.2.9 Deleting Nodes

Select a node and press the Delete key to delete it.

Note: If the Erase tool icon

is not visible, press Shift-E or

click and hold the Knife

tool icon and choose

Erase. See page 29 for more

on the Knife tool.

Alternatively, choose the Erase tool (shortcut E) and click a

node to delete it. Glyphs will keep the path closed and will try to

reconstruct the same path segment without the node:

Press Opt-Delete to break the path by removing the node and

both path segments surrounding the node:

Delete a single segment between on-curve nodes with the Erase

tool by Option-clicking it. Delete all selected segments by

pressing Opt-Delete. Alternatively, select a handle and erase its

segment by pressing Opt-Delete.

4.2.10 Opening and Closing Paths

With the Draw tool (shortcut P), click a node to open the path

at the node position. Short blue perpendicular lines mark open

path endings. Drag the path ends apart using the Select tool

(shortcut V).

Edit View Glyphs 3 Handbook, October 2021 28

Close a path by dragging an open line ending on top of another

with the Select tool. Select two path endings and choose

Connect Nodes from the context menu to add a connecting line

segment between the nodes: → . Choose Close Open

Paths to close the selected paths fully: → .

4.2.11 Cutting Paths

With the Knife tool (shortcut E or Shift-E), click and drag a

line across a path to cut the outline into two separate outlines.

Glyphs will close the two resulting paths along the cutting line.

Cutting across several overlapping paths will rewire the segments

with each other.

Tip: When multiple tools

share one icon in the toolbar,

such as the Knife and Erase

tools, add Shift to the tool

shortcut to toggle

between the tools.

Activate the Knife tool by clicking and holding the Erase tool

and choose Knife from the menu. Alternatively, press Shift-E.

4.2.12 Resegmenting Outlines

Open corners and reconnected nodes offer finer control and

allow manipulating path segments independently from each

other. This control also makes interpolating between

masters easier.

Open a corner node into two nodes by selecting it and

choosing Open Corner from the context menu:

Edit View Glyphs 3 Handbook, October 2021 29

The top left corner of the

counter is opened with Open

Corner. Opening corners only

works on corner nodes.

Choose Reconnect Nodes from the context menu to the two

nodes of an open corner to get back to the original corner node.

Select an even number of nodes and apply Reconnect Nodes to

reconnect each node with its closest neighbor:

The size of the created overlap will be approximately half the first

values entered for vertical and horizontal stems in File → Font
Info →Masters (Cmd-I). Thus, the reconnected nodes should

extend comfortably into the stem (when used on counterforms

such as the B in the image above) or outside the outline, such as

the s on the left.

Opened corners are considered invisible if the triangular

overlaps are small enough in relation to the neighboring visible

outline segments. That way, opened corners can also be placed

on the outside of paths. If the overlap size goes beyond the

threshold size, they will be visible. These outwards facing open

corners are useful for editing bent terminals, as in a sans serif

lowercase s. Select a path segment and open the two nodes on

its extremities with the Open Corner command.

Edit View Glyphs 3 Handbook, October 2021 30

4.2.13 Controlling Path Direction

The starting point of a closed path is displayed as an arrowhead

(or for a smooth node) following the path direction. The end

nodes of an open path are displayed as short perpendicular blue

lines where a light blue arrowhead indicates the first node. On a

closed path, make any on-curve node the first node by choosing

Make Node First from the node context menu.

Tip: Quickly create a punched

through counterform by

overlapping two paths and

pressing Cmd-Shift-R (Path →

Correct Path Direction).

All outer paths need to run counterclockwise, while enclosed

paths (such as the inner path of an O) must go clockwise. Change

the path direction of a path by selecting it and choosing Path →
Reverse Contours or Reverse Selected Contours from the context

menu. When no path is selected, use Path → Reverse Contours
from the menu bar or Reverse All Contours from the context

menu to toggle all path directions in a glyph.

Path → Correct Path Direction (Cmd-Shift-R) will perform an

informed guess and find the right path directions for all paths on

the current glyph layer or all selected glyph layers. This will also

rearrange the shape order and reset the starting points of all

paths to their bottom-left node. Holding down the Option key

changes the command to Correct Path Direction for all Masters

(Cmd-Opt-Shift-R). As the name indicates, it will include all

master layers, all Alternate (see p. 194), and Intermediate layers

(see p. 192). The command ignores all other non-master layers.

This is useful in a Multiple Master setup.

For successful interpolations, the path order, starting points,

and path directions must be compatible and consistent

throughout all font masters. See section 13.5.2, ‘Correcting Path

Direction’ (p. 190) for details on fixing the path direction for

interpolation.

4.2.14 Extremes & Inflections

Extrema are the positions on a path with a completely horizontal

or vertical tangent. Inflections are positions in path segments

Edit View Glyphs 3 Handbook, October 2021 31

where the segment changes its bend from clockwise to

counterclockwise or vice versa.

It is considered good practice to have nodes on extremum

points. Some font technologies, like hinting, require nodes at

extremum positions. Some operations, like offsetting a curve (see

section 6.2.4, ‘Offset Curve’, p. 70), work better with inflection

points placed on the undulating curves. Also, some font

renderers may behave unexpectedly if such nodes are not in

place. Furthermore, inflection points pose a problem for outline

interpolation since they can easily cause kinks in outlines.

Insert nodes on extremum and inflection points by

Shift-clicking a segment with the Draw tool (P). A node will be

inserted at the nearest extremum or inflection.

Alternatively, choose Path → Add Extremes, and nodes will be

added at extremes on all paths of the active layer. Glyphs will not

add an extreme if the resulting segment would be very short. In

this case, it assumes that the node placement was intentional.

Force Glyphs to add all extremes by opening the Path menu,

holding down Option, and choosing Force Extremes. When a

node is only slightly off the extremum position, Glyphs will

attempt to preserve the outline shape while moving the node into

the extremum position and turning the surrounding handles

entirely vertical or horizontal.

Extremes are added automatically at export time with a Filter

custom parameter called AddExtremes. See section 6.2.9, ‘Add

Extremes’ (p. 76) for details. This can be useful for shallow curves

or certain Multiple Master situations, where adding extremes

would make editing or interpolating unnecessarily complex.

4.2.15 Duplicate Nodes

When two adjacent on-curve nodes share the same coordinates,

they are highlighted with a red circle. Merge these nodes with

Path → Tidy up Paths (Cmd-Shift-T).

4.2.16 Focusing & Locking

Prevent accidental edits with focusing and locking.

Focus on one or multiple paths by selecting at least one point

for each path and choosing Focus on Selected Path from the

context menu. Focusing on a path hides the controls for all other

Edit View Glyphs 3 Handbook, October 2021 32

paths. Use path focusing to exclusively work on a single path,

even in complex glyphs. Filters, plug-ins, and other scripts may

still operate on all paths; only the Edit View controls are hidden.

Release the focus by choosing Clear Focus on Paths from the

context menu.

The reverse is possible by locking paths: Lock a path by

Control-clicking or right-clicking one of its nodes and choosing

Lock Path from the context menu. Points of a locked path cannot

be selected or modified in Edit View. Like with focusing, locked

paths can still be changed by filters, plug-ins, and scripts. Points

of a locked path turn red when the mouse cursor is placed on

them, indicating that they cannot be dragged. Unlock a path by

choosing Unlock Path from the context menu of any of its nodes.

Lock and unlock a glyph by choosing Locked from its context

menu. A lock icon appears in the top right corner of the glyph

in Edit View and Font View. A locked glyph cannot be modified:

not with the Select tool, not by a filter, plug-in, or script. This

edit-protection is helpful if the glyph is considered final, and no

further edits should be applied.

4.3 GRAPHIC ATTRIBUTES

Paths can be styled with graphic attributes. These attributes

include stroke styles, fill styles, and masking. The attributes are

applied to a path in the Palette (Window → Palette, Cmd-Opt-P)

and are accessible when View → Show Info (Cmd-Shift-I) is active

and a path is selected.

Copy the attributes of one path to another with the context

menu: Choose Copy Attributes on a path and apply them to

another by choosing Paste Attributes.

4.3.1 Creating Strokes

Left: an open path

Center: the path with a stroke

Right: the expanded outline

Edit View Glyphs 3 Handbook, October 2021 33

Expand a path to a shape by selecting one or more of its points

and entering a stroke width and height in the Stroke section in

the Palette. The stroke width (W) and stroke height (H) are

measured in font units. If no height is set, then the width is used

for both dimensions. Below the width and height fields are

controls for the stroke placement (along the path, to the

left of the path, to the right of the path) and controls for the

stroke ends (, , , ,).

A stroke can be applied to both closed and open paths. For

closed paths, select the Fill checkbox from the Palette to fill the

path delineated by the new outlines.

The original path is displayed in a light gray color, while the

stroke outline is black. A stroke path can be converted to a

conventional outline by choosing Expand Outline from the

context menu.

4.3.2 Masking

Select a path and check Mask from the Palette to subtract the

path from all shapes below it. Applying a mask is a

non-destructive action; the path can still be moved and modified.

Subtracting a circle from a

square by applying a mask to

the circle path.

The subtracted parts of paths are drawn in a light gray color,

while the exporting outline is drawn in black.

Masking is based on the order of shapes since a masking path

only affects shapes below it. Change the shape order by choosing

Filter → Shape Order. Drag the shapes into the desired order and

confirm with OK.

4.4 ANCHORS

Anchors are special points that fulfill multiple tasks in Glyphs.

They primarily serve as a connecting pivot for automatically

aligning components, corners, caps, mark-to-base and

mark-to-mark positioning, and cursive attachment. These

anchors adhere to certain naming conventions. For more details

on these uses, see section 9.1.7, ‘Anchors’ (p. 129). When an

Edit View Glyphs 3 Handbook, October 2021 34

‘origin’ anchor is placed inside a glyph, it can align a component

(see section 4.2.7, ‘Aligning’, p. 26) to a regular path node.

Some third-party scripts and plug-ins make use of special

anchors. Refer to their documentation for further details.

4.4.1 Adding, Editing, and Removing Anchors

Insert an anchor by Control-clicking or right-clicking the

Edit View canvas and choose Add Anchor from the context menu.

An anchor named ‘new anchor’ will be placed at the click position.

Its name is already selected for renaming. After typing the new

name, confirm it by pressing the Return key or clicking anywhere

in the canvas.

Double-click an anchor to rename it, or select it and press

Return, or select it and edit the anchor name in the Info box.

The glyph info database has default anchors associated with

many glyphs. Add these pre-defined anchors to the selected

glyphs by choosing Glyph → Set Anchors (Cmd-U) or, with the

Option key held down, Glyph → Set Anchors for all Masters

(Cmd-Opt-U). Delete all existing anchors and start over with

Glyph → Reset Anchors (Cmd-Shift-U); hold down Option to reset

the anchors across all masters.

Select an anchor by clicking the orange dot that represents

it. Select the next or previous anchor by pressing the Tab key, or

Shift-Tab, respectively. Select multiple anchors by Shift-clicking

them. Names are only shown for selected anchors. Select all

anchors by running Edit → Select All (Cmd-A). This command may

need to be issued twice since Select All will select all paths and

only select all anchors and components if all available paths have

already been selected.

Move an anchor like a node: either with the Select tool and

mouse or arrow keys or through the coordinates in the Info box.

An anchor is diamond-shaped if placed exactly on a metric

line such as the x-height or the baseline, square in an

alignment zone, and circle-shaped in all other cases. Quickly

duplicate an anchor by Option-dragging it. Since anchor names

must be unique inside a layer, an underscore will be added to the

end of the name. Remove one or more selected anchors by

pressing the Delete key.

Align an anchor to one or two nodes by selecting the anchor

and the nodes and choosing Path → Align Selection (Cmd-Shift-A).

See section 4.2.7, ‘Aligning’ (p. 26) for details.

Edit View Glyphs 3 Handbook, October 2021 35

4.4.2 Mark to Base Positioning

_toptop

center _center

Glyphs can automatically build the ‘mark’ (Mark to Base) feature

using anchors. The combining diacritical marks must contain

underscore-anchors (for example, ‘_top’ or ‘_bottom’), and the

base glyph must contain matching anchors without the

underscore prefix (for example, ‘top’ or ‘bottom’). Anchors with

an initial underscore are displayed with a hole: , , .

Combining glyph names often carry the word ‘comb’ at the end

of their names, such as acutecomb (◌́) or macroncomb (◌̄).

Combining diacritical marks have Unicode values and thus can

be typed or inserted in a text. This way, a font user can place any

mark on any base letter by first typing the regular letter and then

inserting the combining mark.

Alongside the ‘mark’ feature, Glyphs will also build the ‘ccmp’

(Glyph Composition and Decomposition) feature if glyphs like

idotless and jdotless are present. See section 8.4.7, ‘Implicit

Features’ (p. 121) for further details.

4.4.3 Mark to Mark Positioning

Glyphs will automatically build the ‘mkmk’ (Mark to Mark)

feature if both underscore- and regular anchors are present in a

combining diacritical mark. A font user will then be able to stack

any combining mark on any other combining mark carrying

both anchors.

4.4.4 Cursive Attachment

Enable proper cursive attachment in Arabic typesetting by

adding ‘exit’ and ‘entry’ anchors to the respective stroke endings

and beginnings in medial, final, and initial letterforms. The ‘entry’

anchor of the instroke will be connected to the ‘exit’ anchor of

the preceding outstroke. Preview cursive attachment immediately

in Edit View when right to left typesetting is enabled (see

section 4.9.4, ‘Writing Direction’, p. 47).

4.4.5 Ligature Carets

caret_1 caret_2

Ligature carets define the positions where a text cursor should be

placed on a ligature glyph. In a ligature glyph, these positions are

defined by special anchors on the baseline. They must be named

‘caret’, followed by an underscore suffix, for example, ‘caret_1’,

‘caret_2’, … The suffix needs to be different for each anchor

because anchor names must be unique inside a glyph layer. The

Edit View Glyphs 3 Handbook, October 2021 36

numbering order does not matter and is exclusively used for

differentiating anchors.

Glyph → Set Anchors (Cmd-U) will insert appropriate caret

anchors in properly named ligature glyphs. Most ligature glyphs

are named with their individual glyph names joined by

underscores such as s_t or f_f_l. For the glyph naming

convention employed by Glyphs, see section 7.6, ‘Names and

Unicode’ (p. 96).

At export, Glyphs will use the caret information to build

so-called LigatureCaretByPos instructions in the GDEF OpenType

table. At the time of this writing, the only known software

supporting ligature caret positioning are Mac applications that

make use of the Cocoa text engine. Adobe and Microsoft apps

ignore this information.

4.4.6 Contextual Mark Attachment

Make an anchor contextual by prefixing its name with an asterisk

(‘*’). Optionally add a space after the asterisk. Select the anchor

and edit the context in which it should overwrite the unprefixed

counterpart in the Anchor Context field:

Moving the ‘bottom’ anchor

to the left in case the current

glyph (sad-ar.init) is

preceded by reh-ar.

The original ‘bottom’ anchor

(next to) is used for mark

attachment unless the glyph is

in a context that matches the

Anchor Context of ‘* bottom’.

The context field is located at the bottom of the Palette

(Window → Palette, Cmd-Opt-P) and is shown when View → Show
Info (Cmd-Shift-I) is checked. Write OpenType feature code into

the Anchor Context field with * representing the current glyph.

Classes and tokens may also be used in the context. See

section 8.4, ‘Features’ (p. 114) for an overview of

OpenType features.

Differentiate multiple context anchors by appending an

Edit View Glyphs 3 Handbook, October 2021 37

arbitrary suffix to their names. For example, the anchor ‘bottom’

might have two context anchors: ‘* bottom.noon’ and

‘* bottom.reh’, which have different anchor contexts.

4.5 GUIDES

4.5.1 Magnetic Guides

When dragging a node selection across the canvas, red lines will

appear, indicating when the selection is aligned with other nodes

or a vertical metric. Deactivate magnetic guides temporarily by

holding down the Control key.

Likewise, a node or any other object being dragged will snap

to all nodes and handles on paths, as well as in components.

When moving close to a node in a component while dragging,

Glyphs will fade in small representations of the nodes inside the

component. Disable node snapping by holding down the

Control key.

4.5.2 Local & Global Guides

Add a local guide to the currently displayed glyph layer by

Control-clicking or right-clicking to open the context menu and

choose Add Guide.Pro Tip: Quickly create a

guide using the Measurement

tool by simultaneously

holding down Cmd-Ctrl-Opt

and pressing the G key after

starting to drag a

measurement line.

A local horizontal guide will be added at

the click position. If two nodes are selected while adding the

guide, it will be laid through the nodes. Toggle the display of

guides in Edit View by choosing View → Show Guides

(Cmd-Shift-L).

Select a guide by clicking anywhere on it. A filled knob

indicates a selected guide. Move a selected guide by dragging its

knob. Double-click the knob to turn it perpendicular to its

current orientation. Quickly duplicate one or more guides by

selecting them and holding down the Option key while dragging

them to a new position.

Local guides are blue and visible only on the layer on which

they have been placed. Global guides are red and visible

throughout a master. Create a global guide by holding down the

Option key while navigating the context menu and choose Add

Global Guide. Toggle a guide between local and global by

selecting it, and from the context menu, choose Make Global

Guide or Make Local Guide.

Lock one or more guides by choosing Lock Guides from their

context menu. A locked guide cannot be selected and displays a

lock / icon instead of its knob. Unlock a guide by

Edit View Glyphs 3 Handbook, October 2021 38

Control-clicking or right-clicking the knob and choosing Unlock

Guide from the context menu.

From top to bottom

(unselected and selected):

local guide, global guide,

locked local guide, locked

global guide.

Press the Tab key to quickly select the next or Shift-Tab to select

the previous guide. When a guide is selected, move it using the

arrow keys (add Shift or Command for larger increments) or drag

its knob with the mouse, just like a regular node.

Change the angle by dragging the guide anywhere outside the

knob. Enter values for its position and its angle in the Info box

(Cmd-Shift-I). Click the lock icon next to the angle in the

Info box to maintain the guide at the set angle until the angle is

unlocked again.

By default, a guide will be positioned relative to the left

sidebearing. Click in the Info box to position it relative to the

right sidebearing or to position it relative to both

sidebearings. Click to use the left sidebearing again. This can

be useful for slanted guides, especially when they are global or

frequently changing the right side.

Select a guide and click the measurement icon in the

Info box to turn the guide into a measurement guide. For more

details, see section 4.10, ‘Measuring’ (p. 47).

Tip: Use View → Show Metrics

Names to label the vertical

metrics. No guides

are needed.

Click Name in the Info box of a selected guide to name it.

Guide names are displayed on the left end of a guide:

Global guides are shown on all glyphs by default. Select a global

guide and choose Edit → Info for Selection (Cmd-Opt-I) to limit

the global guide to a subset of glyphs. The rules for defining the

scope of a global guide work the same as smart filters. See

section 7.5.4, ‘Smart Filters’ (p. 92) for details.

4.5.3 Glyph-Specific Undo History

In Edit and Font View, the Undo mechanism works on a glyph

level. That means that every glyph has its own undo history.

Edit View Glyphs 3 Handbook, October 2021 39

This also implies that certain global actions, especially

manipulating global guides, cannot be undone. That is because

global guides are associated with a master and not a glyph, and

therefore are ignored by the glyph-level undo history.

4.6 GLYPH INFO

An Info box is displayed below the current glyph. The current

glyph is the glyph currently being edited on, or, in text mode, the

glyph following the text cursor. The Info box shows general

information about the glyph, including as its name, Unicode

value, metrics, and kerning.

The glyph name is shown centered at the top of the Info box. Its

Unicode value, if any, is shown in the top right of the box.

UnicodeChecker¹ is a Mac

app by earthlingsoft. Use it to

explore and convert

Unicode values.

Click

the arrow button next to the Unicode value to open it in

UnicodeChecker. If UnicodeChecker is not installed, Glyphs will

present a download link. When opening UnicodeChecker with

the arrow button for the first time, the Mac will ask for permission.

Grant it so that Glyphs can launch UnicodeChecker and set the

current Unicode value to match the one from Edit View.

4.6.1 Horizontal Layout

The lower half of the glyph Info box manages metrics and

kerning. To the left and right of the horizontal metrics icon

are left and right sidebearings. Below the icon is the width of the

glyph. LSB, RSB, and width values can be numbers or metrics

keys. See section 10.1.3, ‘Metrics Keys’ (p. 146) for more details.

Kerning values and kerning groups are at the left and right

edge of the Info box. See section 10.2, ‘Kerning’ (p. 148) for more

information.

4.6.2 Vertical Layout

For glyphs written in a vertical layout, the vertical Info box is

displayed instead. (See section 4.9.4, ‘Writing Direction’, p. 47 for

more information on vertical layout.)

1 earthlingsoft.net/UnicodeChecker

Edit View Glyphs 3 Handbook, October 2021 40

https://earthlingsoft.net/UnicodeChecker

T and B are the top and bottom sidebearings of the glyph,

respectively. O is the vertical origin of the glyph. H is the vertical

width (or height) of the glyph. K and G define the kerning and

kerning groups, both for the top and the bottom of the glyph.

4.7 GLYPH DISPLAY

4.7.1 Zooming

There are many ways to zoom in and out of Edit View. With a

trackpad, zoom using pinch and stretch gestures. Or hold down

the Option key and use a scroll gesture or the scroll wheel of a

mouse. Or activate the Zoom tool (shortcut Z) and click on the

canvas to zoom in, Option-click to zoom out. Alternatively, click

and drag across an area, and it will be zoomed to fill the window.

Tip: The Spotlight shortcut in

the System Preferences may

need to be changed for the

Cmd-Space shortcut to

work in Glyphs.

Temporarily activate the Zoom tool by holding down Cmd-Space

for zooming in or Cmd-Opt-Space for zooming out. If

Cmd-Space collides with another shortcut, try pressing Space

before adding the Command key.

Or use the zoom commands from the View menu: Zoom In

(Cmd-Plus) and Zoom Out (Cmd-Minus). Zoom to Active Layer

(Cmd-Zero) will maximize the area between ascender and

descender in the window. Zoom to Actual Size (Cmd-Opt-Zero)

will zoom one font unit to the size of one screen point. (One

screen point is one pixel on a classic low-resolution screen and

two pixels on new high-resolution Retina screens.)

Or use the zoom / buttons in the bottom right corner of the

window. Alternatively, set the zoom value numerically by entering

a point height in the field between the buttons. The zoom value is

the number of display points at which 1000 font units are shown.

The size of a display point depends on the physical display that

the Mac uses. Display points are independent of pixels, so one

point might correspond to one pixel on a low-resolution display

or two pixels on a high-resolution display. For example, at a

zoom value of 300, a 1000 font units long path would be

Edit View Glyphs 3 Handbook, October 2021 41

displayed at 300 display points, and a path of length 500 font

units would be displayed at 150 display points.

4.7.2 Panning

On a trackpad, drag two fingers to pan around Edit View. Scroll

on a mouse to pan vertically, hold down Shift to scroll

horizontally. Or, drag the scroll bars on the right and bottom

edges of the displayed canvas.

Tip: The Spotlight shortcut in

the System Preferences may

need to be changed for the

Cmd-Space shortcut to

work in Glyphs.

Alternatively, switch to the Hand tool (shortcut H) and drag

the canvas around, or simply hold down the Space bar to

temporarily switch to the Hand tool. When in text mode, pressing

the Space bar would add a space to the text. Press Cmd-Space

and subsequently release the Command key to avoid

inserting a space.

4.7.3 View Options

Toggle settings that influence the glyph display in Edit View from

the View menu:

Show Nodes displays the on-curve and off-curve points of a

glyph. The display of the points in the foreground layer and

the background layer can be set separately. Extra Nodes are

described in section 9.3.3, ‘Extra Nodes’ (p. 139).

Show Metrics shows the vertical and horizontal metrics as well as

the alignment zones of the glyph.

Show Metric Names adds labels to the metrics in Edit View.

Show Hints displays PostScript hints. Use the TrueType Instructor

tool for TrueType hints.

Show Anchors shows the anchors of the current glyph. See

section 4.4, ‘Anchors’ (p. 34).

Show Info displays the Info box as well as contextual controls at

the bottom of the Palette. See section 4.10.1, ‘Info box’ (p. 47).

Show Background displays the paths and components of the

background layer as outlines in the foreground layer. See

section 4.8, ‘Background’ (p. 44).

Show Image shows images placed on a glyph layer. See

section 4.12, ‘Images’ (p. 54).

Show Guides displays local and global guides. See section 4.5,

‘Guides’ (p. 38).

Show Measurement Line shows horizontal and vertical

Edit View Glyphs 3 Handbook, October 2021 42

measurement lines with numbers for the amount of space

between the glyphs. Only visible when the Text tool is active.

See section 4.10.4, ‘Measurement Line’ (p. 51).

Show Annotations shows annotations placed with the

Annotation tool. See section 4.11, ‘Annotating’ (p. 52).

Show Bounding Box displays the bounding box of a selection

with transformation knobs on all four sides and corners. See

section 4.2.6, ‘Scaling & Rotating’ (p. 26).

Fill Preview fills closed paths with the foreground color. The

current glyph is not filled unless the Text, Hand, or Zoom tool

is selected. The foreground color can be changed in the

application preferences. See section 3.2, ‘Appearance’ (p. 14)

for details.

Many third-party reporter plug-ins are available for changing or

enhancing the glyph display in Edit View. After installation, they

will also show up in the View menu. See section 16.3, ‘Plug-ins’

(p. 229) for more details.

4.7.4 Glyph & Layer Colors

Label colors can be set both glyph-wide and layer-specific from

the context menu. Control-click or right-click anywhere on the

canvas of an active glyph and pick the color from the

context menu.

Hold down Option and choose Set Layer Color to pick a layer

color rather than a glyph color. Both glyph and layer colors will

be displayed in the Info box (View → Show Info, Cmd-Shift-I):

ampersand The glyph color is displayed on the left half, the layer color on the

right half, which corresponds to the display of label colors in

Font View. See section 7.3.5, ‘Color Label’ (p. 83) for managing

color labels in Font View.

Edit View Glyphs 3 Handbook, October 2021 43

4.8 BACKGROUND

Each layer has a background layer, usually simply referred to as

‘background’. The background is useful for temporarily storing a

path or tracking changes and comparing outlines before and

after a manipulation. Some filters, such as Filter → Hatch Outline,

use the background as a backup layer to work non-destructively.

Tip: Change the color of

background outlines in the

preferences. See section 3.2,

‘Appearance’ (p. 14).

While working in the foreground, objects on the background

are displayed as a subtle red outline with View → Show
Background (Cmd-Shift-B). If this option is active while in the

background, the foreground objects will be displayed in the same

way. Choose View → Show Nodes → In Background to show the

on- and off-curve points of the background. When the

background is displayed, snapping will also work with objects on

the background layer.

Switch to the background by choosing Path → Edit Background
(Cmd-B). The window display will darken slightly to indicate that

the background layer is active. This command is a toggle; to

switch back to the foreground use Cmd-B, again.

Path → Selection to Background (Cmd-J) replaces the current

content of the background with the active selection; this works in

reverse when the background is active. Simultaneously holding

down the Option key changes the command to Add Selection to

Background (Cmd-Opt-J) and adds the current selection to what

is already in the background. Path → Swap with Background
(Cmd-Ctrl-J) will exchange the foreground with the background.

Empty the background layers of selected glyphs by holding down

the Option key and choosing Path → Clear Background.

Copy the outlines of another font file using Path → Assign
Background into the background layer of all selected glyphs. Put

the same font into its own background to keep track of any other

changes. Selecting all glyphs and choosing Path → Selection to
Background (Cmd-J) has the same effect.

4.9 ENTERING TEXT

Edit View can display multiple glyphs to provide a context of

words and sentences.

Tip: Quickly switch between

text entry and editing the

current glyph by pressing the

Escape key.

When using the Text tool (T), enter characters using the

keyboard. Insert non-alphabetic characters with the Character

Picker (Edit → Emoji & Symbols, Cmd-Ctrl-Space). Edit View has a

preset line width. Set the maximum line width in the application

preferences. See section 3.2, ‘Appearance’ (p. 14).

Edit View Glyphs 3 Handbook, October 2021 44

4.9.1 Text Preview

Keeping a lot of text in Edit View will slow down the interface.

Instead, use the Text Preview (Window → Text Preview) for

reviewing longer passages of text.

Note: The Text Preview

performs well with any

amount of text, even the

contents of an entire book.

Enter text in the text field. This text field renders a real preview of

the font using the Core Text shaping engine by Apple, just like

most other Mac apps do. Note that characters unsupported by

the font are displayed using a system fallback font.

Control-click or right-click into the text field and choose

Layout Orientation → Vertical to switch to a vertical text layout.

Also from the context menu, use the Writing Direction submenu

to control the direction of the text and the text selection.

Choose Edit → Find → Find… (Cmd-F) to search for text or

replace text in the text field. Click the magnifying glass icon to

set options for the search. Choose Insert Pattern or press

Cmd-Ctrl-Opt-P to search for patterns such as spaces or digits.

Use the pop-up menu in the top left of the window to pick the

preview font style. The field to the right controls the font size at

which the text preview is displayed. Click the pin icon to

toggle the pinned state of the window. A pinned window stays on

top of the font window, allowing to continue editing glyphs while

still keeping an eye on the text preview.

Edit View Glyphs 3 Handbook, October 2021 45

4.9.2 Sample Strings

Edit and store sample strings in Glyphs → Preferences… → Sample

Strings (see section 3.4, ‘Sample Strings’, p. 16). Insert a sample

string by choosing Edit → Select Sample Text… (Cmd-Opt-F). Use

the arrow keys or click to choose a string.

Switch to the next or previous sample string without the dialog

by choosing Edit → Other → Select Next Sample String or Select

Previous Sample String, respectively. Keyboard shortcuts to these

commands can be assigned in the preferences. See section 3.7,

‘Shortcuts’ (p. 20) for more details. Click the pin button to

keep the sample strings window open.

4.9.3 Text Tool

Select the Text tool (shortcut T) to switch to text mode and

start typing. Enter a single character, a word, a sentence, or

multiple lines of text. Copy and paste text to and from Edit View.

Use all familiar text editing controls such as the arrow keys, the

Edit menu, and macOS Application Services (Glyphs → Services).
The current glyph is the one to the right of the cursor.

Tip: On keyboards without

Home and End keys, press

Fn-Left Arrow and

Fn-Right Arrow.

Switch to the previous or next glyph in the font by pressing the

Home and End key, respectively. Add Shift to advance through

the glyphs as they are currently visible in the Font View. These

shortcuts are useful when filtering glyphs in the Font View and

stepping through them in Edit View.

Edit → Add Placeholder (Cmd-Opt-Shift-P) inserts a

placeholder for the current glyph. Placeholders are dynamically

replaced by the currently selected glyph. Multiple placeholders

can be placed in Edit View to all reflect the same glyph. Edit a

glyph for all placeholders to mirror it. Placeholders are helpful

when spacing a glyph; for example, quickly switch from

Edit View Glyphs 3 Handbook, October 2021 46

‘ononnoon’ to ‘omommoom’ if the n glyphs are placeholders.

Insert one or more glyphs by name using Edit → Find → Find …
(Cmd-F). In the dialog that appears, enter the glyph name, a part

of it, or different parts of the glyph names separated by spaces.

The dialog will show a list of available glyphs whose name

matches. For example, ‘dier 01’ will find all glyphs that have both

‘dier’ and ‘01’ in their name, like adieresis.001 and edieresis.cv01.

Press Return to insert the selected glyphs into Edit View. Select a

range of glyphs by holding down the Shift key. For a

non-contiguous selection, hold down the Command key.

Click the magnifying glass to configure the search. Choose

Name to search by glyph name, Unicode to search by Unicode

value, and All to search by both. The Unicode search matches the

entered search query with the hexadecimal Unicode values of the

glyphs (for example, 228E).

4.9.4 Writing Direction

Switch between left to right, right to left, and top to bottom

layout with the respective alignment buttons in the bottom right

corner of the Edit View window.

4.10 MEASURING

Glyphs offers several ways to determine coordinates and to

measure distances between points and curves.

4.10.1 Info box

Toggle the display of the Info box with View → Show Info

(Cmd-Shift-I). The Info box always displays data relevant to the

current selection. If there is exactly one node selected, its

coordinates will be displayed.

X 377
Y 610

Select a handle (aka off-curve point, or Bézier control point), and

the Info box will also show its delta values (∆X and ∆Y difference

to the on-curve point) and the total length of the handle (distance

to the on-curve point).

X 233
Y 144

ΔX 89
ΔY 55 L 104.6

Edit View Glyphs 3 Handbook, October 2021 47

Tip: Quickly and precisely

measure a stem or bowl width

by selecting two nodes that

indicate the width and see

what the Info box displays

next to the width symbol.

The X and Y coordinates describe the position of the selection

bounding box. The position is measured from the layer origin at

(0, 0) to the part of the selection indicated by the blue point in

the Info box. For example, measures from the origin to the

selection center.

See section 4.2.6, ‘Scaling & Rotating’ (p. 26) for more on the

selection Info box.

Values in the Info box can be edited by clicking the number.

Confirm a new value by pressing Return or by exiting the field.

Use the Tab key to exit the current field and edit the next value in

the Info box. Go back by pressing Shift-Tab. Pressing Escape

exits the current field without entering a different field. Use the

Up and Down arrow keys to increment or decrement the value of

a field. Hold down Shift for increments of 10.

When a component is selected, the Info box of the base letter

appears to the right. The base letter is the original glyph the

component points to. The base letter Info box displays the glyph

name, its X and Y offset, its horizontal� and vertical� scale in

percent, its slant to the right , and counterclockwise rotation

angle . The arrow button in the top right corner will insert

the original glyph in the Edit tab string to the left of the current

glyph and activate it for editing.

Change the glyph the component points to by clicking its name

in the Info box and choosing another glyph from the glyph list in

the subsequent pop-up window. For more details on working

with components, see section 9.1, ‘Components’ (p. 126).

Changing the position only has an effect if the component is

not automatically aligned. For more details on automatic

alignment, see section 9.1.8, ‘Automatic Alignment’ (p. 130).

4.10.2 Measurement Tool

Switch to the Measurement tool (shortcut L) to see all

coordinates of all nodes and anchors at once.

Edit View Glyphs 3 Handbook, October 2021 48

The blue numbers are the X and Y coordinates of the on-curve

points, the green numbers are the coordinates of off-curve points,

and the red numbers are the x and y delta values between the

on-curve points.

Tip: The X delta values

respect the italic angle set in

Font Info. So, an X delta of

zero indicates a line exactly in

the italic angle.

Clicking and dragging draws a ruler that displays precise

measures between all of its intersections with the outlines. Add

Shift to drag a horizontal or vertical ruler. At the end of the ruler,

its angle is displayed in counterclockwise degrees, where zero

degrees corresponds to dragging the ruler perfectly vertically

towards the top.

The Measurement tool works on all visible glyphs in Edit View.

This also applies to the measurement line:

Edit View Glyphs 3 Handbook, October 2021 49

Temporarily activate the ruler and the display of point coordinates

by simultaneously holding down Cmd-Ctrl-Opt. Press the G key

while dragging a ruler to add a guide in measurement mode.

Holding down Command temporarily switches to the Select tool.

4.10.3 Measurement Guides

Any guide, even a global guide, can be turned into a

measurement guide. Click the guide to select it and click the

measurement symbol in the Info box. See section 4.5, ‘Guides’

(p. 38) for more details.

Like the Measurement tool, guides in measurement mode will

display the distance between their intersections with outlines or

components. Contrary to the tool, they always do so as long as

guides are shown, no matter which tool is active.

Edit View Glyphs 3 Handbook, October 2021 50

Note that the overlapping paths (such as the curl in the sigma

pictured above) are ignored by the Measurement tool or

measurement guides. Such overlapping paths are drawn with a

light gray color and removed when exporting a font with the

Remove Overlaps filter enabled (see section 6.2.10, ‘Remove

Overlap’, p. 76).

4.10.4 Measurement Line

When in text mode, enter measurement mode by choosing View →
Show Measurement Line. The measurement line will display the

sidebearings at a given height, ignoring the shape of the glyph at

other positions. More precisely, the numbers displayed indicate

the distance between the left or right sidebearing and the point

where the measurement line first crosses the glyph outline. Alter

the height of the measurement line by Cmd-Ctrl-Opt-clicking or

Cmd-Ctrl-Opt-dragging. Or switch to the Measurement tool (L)

and drag it to the desired height.

In measurement mode, thin gray lines indicate the widths of

the glyphs. Kernings receive a color code: Negative kerning is

displayed as light blue, positive kerning as yellow. The colors can

be changed in the preferences. See section 3.2, ‘Appearance’

(p. 14) for more details.

Edit View Glyphs 3 Handbook, October 2021 51

4.11 ANNOTATING

The Annotation tool (shortcut A) adds notes and correction

marks to glyph layers. When the tool is active, the Info box

(View → Show Info, Cmd-Shift-I) turns into a small palette

holding a range of annotation tools.

Choose Edit → Select All (Cmd-A) to select all annotations in the

currently active glyph layer. Move selected annotations with the

arrow keys. Hold down Shift for increments of 10, and Command

for increments of 100 units. Press the Delete key to remove all

selected annotations.

4.11.1 Annotation Cursor

The first tool in the Annotation palette is the Annotation

Selection tool . Use it to click-select annotations. Shift-click to

select multiple annotations at once.

4.11.2 Annotation Text

Place snippets of text with the Text Annotation tool . Click to

add a new text annotation, double-click an annotation to edit its

text. A text snippet can span across multiple lines. The handle on

the right controls the width of the text box.

Edit View Glyphs 3 Handbook, October 2021 52

4.11.3 Annotation Arrow

The Arrow Annotation tool adds red arrows onto the canvas.

Use the handle on an arrow stem to control its rotation.

4.11.4 Annotation Circle

The Circle Annotation tool adds red circles onto the canvas.

The handle at the bottom of the circle controls its diameter.

4.11.5 Plus &Minus Annotations

Many designers use plus and minus signs to indicate that a

counter, a bowl, or a stem should be thickened or thinned. Click

the plus or minus button and then click on the canvas to add

the symbols to the relevant area.

Edit View Glyphs 3 Handbook, October 2021 53

4.12 IMAGES

4.12.1 Adding Images

All image formats supported by macOS can be added to a glyph

layer. These include JPEG, PNG, PDF, TIFF, and PSD files. Add an

image by dragging the image file over a glyph cell in Font View or

over a glyph in Edit View. Alternatively, choose Glyph → Add
Image… to insert an image file.

In a Glyphs document, only the relative path to an image file is

stored. Thus, it is a good idea to keep images in a subfolder next

to the Glyphs file. If the path to the placed image is outdated or

broken, it will be indicated with a missing image symbol:

Toggle the display of images with View → Show Image. Images are

always displayed for empty glyphs (glyphs without paths or

components).

Image files are ignored at export unless exporting a bitmap

image font, like an Apple-style color font. See section 14.4, ‘sbix

Fonts’ (p. 208) for details.

4.12.2 Manipulating Images

By default, images are scaled to a size where one DTP point

corresponds to one font unit and placed at the origin point of the

layer. Consider scaling images before importing them into Glyphs

when preparing scans.

Move an image by dragging it to the desired position. When

an image is selected, resize it with the bounding box

(Cmd-Opt-Shift-B) or the Scale tool (S). Rotate an image with

the Rotate tool (R). The Transformations palette also works

for images.

The Info box (Cmd-Shift-I) offers controls for the image position

(X and Y) and dimensions (�width and�height) of the selected

image. Rotate the image by changing the degree figure next to

Edit View Glyphs 3 Handbook, October 2021 54

the curved arrow . Clicking the right-pointing arrow reveals

the original image file in Finder.

Click the lock icon to lock the image. A locked image

cannot be selected or manipulated. Unlock an image by

Control-clicking or right-clicking the image on the canvas and

choosing Unlock Image. Choose Set Crop to Layer Bounds from

the image context menu to hide the image outside the layer

bounds defined by its width, descender, and ascender.

4.13 PREVIEWING & TESTING

4.13.1 Previewing Kerning

Kerning can be previewed with three modes: no kerning ,

kerning , and locked kerning . See section 10.2.1, ‘Kerning

Modes’ (p. 149) for details.

4.13.2 Previewing Masters

The glyphs in Edit View are drawn for the currently selected

master. Change the current master by clicking the icon for the

master in the toolbar.

Set master icons in File → Font Info… →Masters. Switch to one of

the first nine masters of the font by pressing Command and the

number of the master: Cmd-1, Cmd-2, …, Cmd-9. Change the

master of the currently edited glyph or the selected glyphs in

Edit View by selecting a master layer from the Layers palette. For

more details on working with multiple font masters, see

chapter 13, ‘Interpolation’ (p. 184).

4.13.3 Previewing OpenType Features

Toggle OpenType features from the Features menu at the

bottom left of the window in Edit View. When at least one feature

is selected, the Features menu is highlighted in an accent color.

The button will show the four-letter tags of the active features.

Activate a feature by selecting it from the Features menu.

Multiple features may be active at the same time. Select a feature

from the menu again to deactivate it in Edit View. Deactivate all

features by choosing the dash (-) at the top of the menu.

Recompile the font features from the features editor (File → Font
Info… → Features) to make newly added features appear in the

Edit View Glyphs 3 Handbook, October 2021 55

menu. Quickly select an item from the menu by typing its name

while the menu is open. This also works with the dash.

Preview language-specific forms by enabling Localized Forms

from the menu. Pick the desired script and language from the

bottom of the features menu. For this to work, a ‘locl’ feature

with valid language-specific rules must be present in File → Font
Info… → Features.

In Edit View, Glyphs previews substitution, kerning, and

cursive attachment positioning features. Other positioning

features may be handled differently in third-party applications

and are not previewed in Edit View. Test these features directly in

software by exporting the fonts. When testing in Adobe

applications, export the fonts to the Adobe Fonts folder. For

details, see section 4.13.6, ‘Previewing in Adobe Applications’

(p. 58). Note that in InDesign, the OpenType features may be

interpreted differently by different composers.

4.13.4 Previewing Interpolated Instances

Click the Preview button in the bottom left of the window to

preview font instances. The window content will be split with

Edit View above and Preview Area below. Drag the separator to

adjust the size of the Preview Area.

Alternatively, open a separate window which can also be

placed on a second display via Window → Preview Panel. The

Preview Panel displays the Edit View glyphs of the current font

file. When no Edit View tab is currently active, the Preview Panel

stays blank. Click an Edit View tab, and the Preview Panel will

immediately update to show the respective glyphs.

Select the instance to be previewed from the pop-up menu in

the bottom left of the preview. Show All Instances displays the

current glyph across all instances of the font. Toggle the display

of individual instances in Show All Instances by clicking the eye

/ icon next to an instance name. Select the dash (-) for the

preview to mirror the master used in Edit View.

Except for the Show All Instances option, the Preview Area and

Preview Panel render the complete text of the current Edit View

tab on a single line. The current glyph is centered by default.

Drag the text horizontally in the Preview Area to reposition it.

Double-click a previewed glyph to edit it. The rendering respects

some custom parameters as well as intermediate and alternate

layers. Control-click or right-click the Preview Area and choose

Edit View Glyphs 3 Handbook, October 2021 56

Always Center Active Glyph to keep the active glyph centered. If

deactivated, Glyphs will try to fill the Preview Area as best as

possible, keeping the text flush left or flush right.

Switch between black-on-white and white-on-black with the

Invert button next to the instances pop-up menu. With the

Flip / button, flip the Preview upside-down. Flipping text can

be helpful when testing the spacing of a font. Test the legibility of

the font by blurring the font sample in the Preview with the slider

next to the Flip button.

4.13.5 Previewing in macOS

Applications on the Mac cache font files. Caching fonts is an

optimization that makes sense for most Mac users since those

fonts are typically installed just once and accessed many times by

many applications. However, when creating fonts with Glyphs,

the fonts that have already been cached prevent their subsequent

exported versions from showing up in apps. There are multiple

approaches to bypass font caching.

Firstly, quit and relaunch the app in which the fonts are

previewed. For example, when testing a font in Pages, save the

document and quit Pages. Export the new version of the font and

relaunch Pages.

If this approach does not work, check Test Install in the OTF

export dialog. This option writes the font data directly to the

system memory without creating a new font file. Quitting and

relaunching may still be required for the new font version

to show up.

If the new font versions still do not show up, restart the Mac.

In case that does not fix the issue either, uninstall the affected

fonts from the system by deleting them in Font Book. Then, quit

all applications and launch the Terminal application. Enter the

following lines and press the Return key after each line. If

prompted for the user password, note that entering the password

does not display the typical ••• bullet points. Press Return to

confirm the password.

sudo atsutil databases -remove

atsutil server -shutdown

atsutil server -ping

After running the three lines above, restart the Mac for the

changes to take effect.

Edit View Glyphs 3 Handbook, October 2021 57

If the problem persists, reboot the Mac in safe mode by

pressing Cmd-S at startup until the Apple logo appears.

Following that, recreate the caches by holding down Shift while

the computer completes the restart and keep holding it while

logging in.

4.13.6 Previewing in Adobe Applications

For a complete font preview, including positioning features and

menu order, open the export dialog (File → Export, Cmd-E) and

choose the OTF export.

Set the path in Export Destination to /Library/Application

Support/Adobe/Fonts. For this, first, click the folder path to

open the folder browser. Then, press Cmd-Shift-G and enter the

path of the Adobe Fonts folder exactly as above.

If the error message ‘The

folder can’t be found.’

appears, remove the /Fonts at

the end of the text field and

press Go again. Now create

the folder by clicking New

Folder or by pressing

Cmd-Shift-N. Enter ‘Fonts’

and confirm with Create.

Click Go and then click Open to choose the Adobe Fonts

folder and export the fonts by clicking Next…

The font becomes immediately available in all Adobe

applications. Glyphs will overwrite any previously saved instance

of the font in this folder. The font will not be available outside

Adobe apps, but this is a convenient way to circumvent any font

cache problems in macOS.

Adobe apps may need to be closed and relaunched the first

time the Adobe Fonts folder is used. After that, the Adobe font

menus will update immediately every time the font is exported.

4.13.7 Previewing inWeb Browsers

In the export dialog (File → Export, Cmd-E), check the .woff2

option to export to WOFF2 font files. A .woff option for older

browsers is also available.

These webfont files can be loaded into an HTML webpage and

previewed in a web browser. Reload the webpage to see the new

versions of the exported fonts. The font cache of many browsers

can be bypassed by holding down the Shift key while reloading.

A simple HTML file might look like this:

<!DOCTYPE html>

<html lang="en">

<meta charset="utf-8">

<meta name="viewport" content="width=device-width">

<title>Webfont Preview</title>

<style>

@font-face {

Edit View Glyphs 3 Handbook, October 2021 58

font-family: 'Some Font Name';

src: url(some-font-name.woff2) format('woff2');

}

html {

font-family: 'Some Font Name';

}

</style>

This is the test text for the webfont preview.

</html>

Edit View Glyphs 3 Handbook, October 2021 59

5 Palette

Open the Palette sidebar with the sidebar button in the

top right corner of the window, or choose Window → Palette
(Cmd-Opt-P). Glyphs includes four sections: Dimensions, Fit

Curve, Layers, and Transformations. Plug-ins can add additional

sections to the Palette (see p. 229). Collapse or expand a section

by clicking the chevron on the left side of the section name.

5.1 DIMENSIONS

The Dimensions section does not affect the font but serves as a

notepad where the dimensions of common font features can be

written down and referenced. Enter a value by clicking a number

or an empty field (‘--’). Values are stored per master. The fields

change according to the script attributed to the glyph. It can be

changed through Edit → Info for Selection (Cmd-Shift-I).

5.2 FIT CURVE

Fit Curve from 20% to 100%

The Fit Curve section helps to create curves with a smooth

curvature. Clicking one of the eight round buttons changes

the length of the selected handles. The leftmost button sets the

handles to the length specified in the left field, and the rightmost

button matches them to the right field. The intermediate six

buttons set the handles to intervals of even lengths. Alternatively,

activate the eight buttons with the shortcuts Ctrl-Opt-1

through Ctrl-Opt-8.

The plus and minus buttons uniformly increase or

decrease the handles length of the selected curve segments. Fit

Curve always works on both handles of a segment, even if only

one is selected.

When a handle is selected, a small gray indicator located

under the buttons shows the current handle length. The

minimum value is 1 percent, the maximum value is 100 percent. A

length of 55 % is the closest approximation to an elliptic

curvature or a circle. Such a curve segment appears equally

curved across its entire length. Curves with longer handle lengths

(above 55 %) appear flattened towards their on-curve points,

making them more apt for connecting to line segments. Curves

with shorter handle lengths (below 55 %) appear flat in the middle

and highly curved towards the ends.

Glyphs 3 Handbook, October 2021 60

5.3 LAYERS

A layer contains the outline of a glyph. A single glyph can have

multiple layers, at least one for each master.

Layers are shown in the Layers section of the Palette. The

layers are sorted by their master. Drag the handle at the bottom

of the Layers section to resize it. Click the eye symbol next to

a layer to toggle its display. A visible layer is displayed with a

faint blue line when a different layer of the glyph is active.

Change the color in the preferences (see section 3.2, ‘Appearance’,

p. 14). Use the Select All Layers tool (shortcut Shift-V) to edit

all visible layers at once. The nodes for the current layer and all

visible layers are shown and can be manipulated simultaneously.

See section 13.8.1, ‘Select All Layers Tool’ (p. 196) for details.

Shift-click to select a range of layers or Command-click to

make a non-contiguous selection. Reorder layers by dragging a

layer to a new position. Layers can only be reordered

within a master.

Glyphs differentiates between three types of layers: master

layers, backup layers, and special layers.

5.3.1 Master Layers

Master layers are needed for interpolating instances. Every glyph

has a master layer for every font master. In the Layers palette,

master layers are labeled with the master name and are set in

bold. Master layers cannot be added, deleted, or renamed from

the Layers section. Instead, open File → Font Info… →Masters to

manage font masters.

Choose Only Show Layers from Current Master from the

filter menu to hide all layers not belonging to the current

master. This option can clean up the layers list and is particularly

helpful when working on fonts with many masters.

5.3.2 Backup Layers

Backup layers are used to keep a copy of previous drawings.

Click the plus button in the bottom left of the Layers section

to create a new backup layer. By default, a backup layer is labeled

with its creation date and time. Double-click the layer name to

rename it. Click the minus button to delete the selected layer.

Backup layers are indented below their master layer and set in a

regular weight. A glyph can have any number of backup layers.

Choose Hide Backup Layers from the filter menu to hide all

Palette Glyphs 3 Handbook, October 2021 61

backup layers.

Revert to a backup layer by choosing Use as Master from the

actions menu. The backup layer will be deleted, its contents

will be placed on the master layer, and the contents of the current

master layer will be placed on a new backup layer. Alternatively,

drag a backup layer onto a master layer to use it instead as a

master layer.

5.3.3 Special Layers

Special layers can be intermediate and alternate layers for

interpolation or any kind of color layer. Special layers are

indented below their master layer. The label reflects their type

and is set in bold.

Intermediate and alternate layers are used in Multiple Master

setups. See chapter 13, ‘Interpolation’ (p. 184) for more details.

Color layers are used for color fonts. See chapter 14, ‘Color Fonts’

(p. 203) for more details. Plug-ins may define their own special

layers. Refer to their documentation for more information.

5.4 TRANSFORMATIONS

The Transformations section transforms points, paths,

components, anchors, guides, images, and more. The following

transformations are supported:

mirror the selection horizontally or vertically ;

scale or reverse scale the selection;

rotate the selection clockwise or counterclockwise ;

slant the selection left , right , down , or up ;

align the selection left , right , to the top or bottom ,

center it vertically or horizontally ;

perform boolean operations (union, subtraction,

intersection) on paths.

Transformations can be applied in both Font View and Edit View.

According to the selection, the transformation applies to

segments, paths, or complete glyph layers.

The buttons to the left and right of text fields perform

opposite transformations. For example, clicking undoes the

transformation caused by clicking . These opposing

transformations are not subject to rounding errors that might be

introduced by the unit grid. See section 8.5.1, ‘Grid Spacing &

Palette Glyphs 3 Handbook, October 2021 62

Subdivision’ (p. 122) for details on the unit grid.

5.4.1 Transformation Origin

All transformations (except for alignment) are performed with

respect to a transformation origin. The top row of the

Transformation palette controls this origin point.

The transformation box places the transformation origin

with respect to the selection bounding box. Either one of the four

corners, or the center of one of the four edges, or the center of

the selection box can be defined as the transformation origin.

The reference point uses the transformation origin as

defined by the Scale tool (S) or the Rotate tool (R). Using one of

those tools, click on the canvas to define the transformation

origin. The point is indicated as a red ring with a crosshair

when using the Scale/Rotate tool and just as a crosshair when

using any other tool.

The metrics point places the transformation origin at

one of the metrics defined in File → Font Info… →Masters →
Metrics. Choose either the baseline, half or full x-height, or half

or full cap height. For CJK glyphs, the layer dimensions

control is displayed instead. It places the transformation

origin at the center of the layer (half of the width and centered

between the ascender and the descender).

5.4.2 Mirroring

The mirror buttons / reflect the selection to the other side of

the transformation origin. Horizontal mirroring reflects across

the horizontal center of the layer when a metrics point defines

the transformation origin.

Mirror with the transformation origin positioned in the metrics

point control at either half the x-height or half the cap height to

preserve overshoots. For example, mirroring an n that overshoots

the x-height will result in an u shape that overshoots the baseline.

Mirroring a corner component (see section 9.3, ‘Corner

Components’, p. 138) will turn a left corner into a right corner and

vice versa. Mirroring a glyph component upside-down will

reverse the assignment of top and bottom anchors in the original

glyph. This way, a top mark can be used as a bottom mark by

mirroring the component.

Palette Glyphs 3 Handbook, October 2021 63

5.4.3 Scaling

Scaling by 120% using an

origin of and .

Click the scale button to scale the selection by the specified

percentage. Percentages larger than 100 % increase the selection

size, percentages smaller than 100 % decrease the size, and a

percentage of 100 % does not change the size. The scaling factor

along the horizontal axis (top field) and the vertical axis (bottom

field) can be defined independently. The top field is used for both

axes if the lock icon is locked.

Reverse scaling is helpful since

a scale of 120% would not be

undone by simply scaling to

80%, but by scaling to

83.3…% (= 100%/120%).

The reverse scale button undoes a scaling operation. This

is not the same as scaling down: Scaling with by a percentage

smaller than 100 % (for example, 75 %) shrinks the selection.

Scaling with by the same percentage returns the selection to

its original size. Similarly, a selection that was enlarged to a value

larger than 100 % with can be undone using .

5.4.4 Rotating and Slanting

Slanting is sometimes also

referred to as skewing.

Rotate the selection with and . Slant the selection with , ,

, and . Note that slanting a selection twice by a certain

amount does not yield the same result as slanting it once with

double the amount.

5.4.5 Aligning

The align buttons (, , , , ,) can be used on points,

complete and partial paths, anchors, and components. Aligning is

always done relative to the bounding box of the selection.

Quickly align the selected points with Path → Align Selection
(Cmd-Shift-A). This command respects the setting for the

transformation origin. See section 4.2, ‘Editing Paths’ (p. 23) for

more details.

5.4.6 Boolean Operations

The bottom row of buttons combines closed paths with boolean

operations: union, subtraction, and intersection.

From left to right: two

overlapping paths, union,

subtraction, and intersection.

Palette Glyphs 3 Handbook, October 2021 64

Union removes the overlaps in all selected paths (or all paths of

the layer if there is no selection). Subtraction removes the

selected paths from the unselected paths. Paths involved in the

subtract operation are merged first to achieve consistent results.

Intersection keeps only the parts where the selected paths

overlap the unselected paths. Both subtraction and intersection

use the frontmost path as the selected path if there is no

selection.

A union operation can be applied to all glyphs on export using

the Remove Overlap option. See section 15.1.1, ‘Options’ (p. 215)

for details.

Palette Glyphs 3 Handbook, October 2021 65

6 Filters

Filters process glyph layers. Their functionality ranges from

simple width transformations to randomized distortions of glyph

outlines. Glyphs includes a list of built-in filters. Plug-ins can

extend this list by providing additional filters.

6.1 APPLYING FILTERS

6.1.1 Filter Menu

Apply a filter by choosing Filter → (name of the filter). The filter

will be applied to all selected glyphs in Font View. In Edit View,

the filter will be applied to a selection of glyphs made with the

Text tool or to the current glyph with any other tool.

Filters usually affect only the currently visible layer. Applying a

filter to all masters of a glyph may therefore require re-running

the filter on all other masters. Quickly apply the last used filter by

pressing Cmd-R.

6.1.2 Filters as Custom Parameters

Most filters can be applied to an instance on export using custom

parameters. Add a custom parameter by navigating to File → Font
Info… → Exports → Custom Parameters. Click the plus button,

choose Filter, and click Add. A Filter parameter with a text field

will be added to the list of custom parameters.

Write the name of the filter followed by its arguments into the

text field. Arguments are separated by semicolons (;). Some

argument values have a specific position in the arguments list,

and some are named. Named arguments begin with their name

and a colon (:) followed by their value.

FilterName; value1; value2; someName: value3

For example, the following line would apply the RoundCorner

filter with a radius of 15 and visual corrections activated (1 for

active, 0 for inactive):

RoundCorner; 15; 1

The order and meaning of arguments depend on the filter. Filters

built into Glyphs are described in the text that appears when

pressing the Custom Parameters plus button and

choosing Filter.

Glyphs 3 Handbook, October 2021 66

Limit a filter to a subset of glyphs by adding an include

argument that lists all glyph names for which the filter should

be applied:

RoundCorner; 15; 1; include: a, b, c

Similarly, use the exclude argument to apply a filter to all glyphs

except for the listed glyphs:

RoundCorner; 15; 1; exclude: a, b, c

Spaces in filter parameters are optional and may be added to

improve legibility.

Multiple Filter parameters can be added to a single instance.

They are applied during export in the order of the custom

parameters. Filter parameters get applied after the components

of a glyph are decomposed. Use a PreFilter custom parameter

instead to run a filter before glyph decomposition. The filter rules

in the custom parameter text field are the same for PreFilter. See

section 9.1.10, ‘Decomposing’ (p. 133) for more on glyph

decomposition.

When applied from the Filter menu, many filters have an

actions button in the lower left of their dialog window. Click

the button and choose Copy Custom Parameter. The custom

parameter for the filter can now be pasted into an instance. Open

File → Font Info… → Exports, choose an instance from the sidebar,

click the Custom Parameters heading, and paste the filter with

Edit → Paste (Cmd-V).

Filters Glyphs 3 Handbook, October 2021 67

6.2 BUILT-IN FILTERS

6.2.1 Shape Order

Shape Order dialog window:

One column per master/

alternate/intermediate layer.

Drag to reorder shapes within

a column. The insertion

position is highlighted in blue.

The Shape Order filter lists all shapes (paths and components) of

a glyph across all layers. Paths are shown in navy blue;

components in brown. Each column lists the shapes of a master/

alternate/intermediate layer. Click and drag a shape to reorder it

within its column. Confirm the chosen shape order with OK or

revert to the original shape order with Cancel.

Columns are separated by a gray gutter if there are multiple

independent interpolations for the glyph. That might be the case

when using intermediate layers (see section 13.6, ‘Intermediate

Layers’, p. 192) or when employing a complex master setup (for

example, when condensed masters interpolate independently

from extended masters).

The Shape Order filter is useful when Path → Correct Path
Directions for all Masters (Cmd-Opt-Shift-R) does not yield the

desired master compatibility.

Filters Glyphs 3 Handbook, October 2021 68

6.2.2 Extrude

Filter → Extrude will create a solid shadow offset for the shape of

the glyph. The following parameters are configurable:

Offset Controls the length of the shadow in font units.

Angle The direction of the extrusion in counterclockwise

degrees from a right horizontal stretch.

Don’t Subtract By default, the original shape will be subtracted

from the extruded shape. Suppress such a subtraction by

enabling this option.

From left to right:

1 normal glyph

2 standard extrude

3 composition of 1 and 2

4 Don’t subtract enabled

The custom parameter rule is as follows:

Extrude; Offset ; Angle ; Don’t Subtract

For example, to offset by 100 units at an angle of −30 degrees:

Extrude; 100; -30

Don’t Subtract is disabled by default. Enable the option by

setting its value to 1:

Extrude; 100; -30; 1

6.2.3 Hatch Outline

Filters Glyphs 3 Handbook, October 2021 69

Filter → Hatch Outline creates hatched glyphs. The following

parameters are configurable:

Origin Defines the origin point (X and Y coordinates) where the

hatching pattern begins.

StepWidth The distance between the strokes.

Angle The angle at which the strokes are drawn. 0° is horizontal,

90° is vertical.

Offset Path The thickness of the strokes. Disable this option to

create open paths instead (which may be useful in

combination with other filters or plug-ins).

The custom parameter rule is as follows:

HatchOutlineFilter; OriginX: X ; OriginY: Y ;

StepWidth: Distance ; Angle: Angle ; Offset: Offset

The arguments are all optional and can be written in any order. If

left out, the argument of an option will assume its default value.

For instance, for strokes, a thickness of 5 inclined at a 40° angle

and placed at every 20 units:

HatchOutlineFilter; StepWidth:20; Angle:40; Offset:5

The hatch origin will default to X=0, Y=0.

6.2.4 Offset Curve

Filter → Offset Curve changes the thickness of stems horizontally

and vertically. The following parameters are configurable:

Horizontal, Vertical Define the horizontal and vertical offset

from the current outline. Positive values expand the outline;

negative values contract the outline. Click the lock button to

use the horizontal field for both values.

Make Stroke Offsets the outline in both directions to form a

stroke along the outline. This is useful for creating outlines

from closed paths. See section 4.3.1, ‘Creating Strokes’ (p. 33)

for creating non-destructive strokes.

Filters Glyphs 3 Handbook, October 2021 70

Auto Stroke Offsets the outline in both directions while

maintaining the vertical dimensions intact when making a

stroke. If enabled, it assumes a position of 50 %.

Position Controls the distribution of the stroke. 0 % places the

stroke to the left of the path, 100 % places it to the right. At

50 %, the stroke is evenly distributed along the path.

From left to right:

Make Stroke with Position of

100%, 50%, 0%, and 0% with

Keep Compatible enabled.

Keep Compatible Keeps the offset curve compatible across

masters by not introducing any new nodes or handles.

Enabling this option might reduce the offset accuracy.

Cap Style Defines the stroke endings style when making a stroke

from an open path. Choose from flat , square , round ,

round inset , and aligned to the vertical and

horizontal axes .

The custom parameter rule is as follows:

OffsetCurve; Horizontal ; Vertical ; Make Stroke ;

Position ; Keep Compatible ; cap: Cap Style

The Horizontal and Vertical offsets are in font units. Make Stroke

is 0 for false or 1 for true. Position is either a percentage (for

example, 0.5 for 50 %) or ‘auto’ for the Auto Stroke option. Set

Keep Compatible to ‘keep’ to enable the option or leave the

argument off to disable it. Cap Style is 1 for , 2 for , 3 for ,

4 for , and 0 or left off for . For example, for a stroke with

thickness 20 (10 units on either side) and a cap style of :

OffsetCurve; 10; 10; 1; 0.5; cap:1

Filters Glyphs 3 Handbook, October 2021 71

Curves can be offset non-destructively using stroke styles. See

section 4.3.1, ‘Creating Strokes’ (p. 33) for details.

6.2.5 Roughen

Filter → Roughen segments an outline into straight line segments

and randomly moves all resulting nodes within a given limit.

Control the size of the line segments with the Segment Length

field. The Horizontal and Vertical values control the maximum

offset for each node. The custom parameter rule is as follows:

Roughenizer; Length ; Horizontal ; Vertical

For example, the following rule would match the Roughen dialog

window shown above:

Roughenizer; 15; 15; 10

6.2.6 Round Corners

Filter → Round Corners rounds all selected corners of a path. The

filter is only applied to outwards pointing corners if nothing is

selected. The Radius is defined in font units. Choose Visual

corrections to balance the rounding of acute and obtuse corners

using smaller and larger radii, respectively. Such visual

corrections tend to create more natural-looking rounding.

From left to right:

No filter, without visual

correction, with visual

correction, filter applied to

outwards and inwards

pointing corners.

The custom parameter rule is as follows:

RoundCorner; Radius ; Visual Corrections

If Radius is positive, it is applied to outwards pointing corners; if

it is negative, it is applied to inwards pointing corners. Add

multiple RoundCorner custom parameter filters to control both.

Set Visual Corrections to 1 to enable it or 0 to disable it. For

example, the following rule settings apply a corner radius of 55 to

outwards pointing corners with visual corrections enabled:

Filters Glyphs 3 Handbook, October 2021 72

RoundCorner; 55; 1

6.2.7 Rounded Font

Filter → Rounded Font rounds the stem endings with appropriate

overshoots. For this, it uses the vertical stem metrics as defined in

File → Font Info… →Masters → Stems. The custom parameter rule

is as follows:

RoundedFont; Vertical Stem Width

If a Vertical Stem Width argument is set, its value is used instead

of the vertical stem width from the master metrics. Such an

override can be helpful when combined with the include and

exclude arguments to define a different stem width for a subset

of glyphs. For example, consider three Filter custom parameters

for an instance:

RoundedFont; exclude: f, k, t, dollar, percent

RoundedFont; 74; include: f, k, t

RoundedFont; 86; include: dollar, percent

Here, the glyphs f, k, t, dollar ($), and percent (%) would be

processed with special Vertical Stem Width values. See

section 6.1.2, ‘Filters as Custom Parameters’, p. 66 for details on

include and exclude.

6.2.8 Transformations

The Transformations filter is split into three dialogs: Transform

Metrics, Transformations, and Interpolate with Background.

TransformMetrics Glyph → Transform Metrics assigns either a

new width or new sidebearings to the selected glyph layers.

Filters Glyphs 3 Handbook, October 2021 73

Enable Width to assign a new width to all selected glyphs. Check

on both sides to modify both sides equally to match the new

width. Otherwise, the points on the layer keep their original

coordinates.

Uncheck Width to set new sidebearings. Control whether the

left sidebearing (LSB), the right sidebearing (RSB), or both should

be changed using the checkboxes next to their fields. If Relative

is selected, the LSB and RSB values are added to the current

sidebearings (or subtracted if the entered values are negative).

Otherwise, the LSB and RSB values overwrite the existing

sidebearings.

This type of transformation is

also known as an affine

transformation.

Transformations Path → Transformations applies a linear

transformation to the selected points or selected layers.

Translate moves points by a given X and Y value. Origin defines

the point from which the transformation originates. Scale scales

the selection along the�horizontal and�vertical axis. If the

lock button is locked , the horizontal value is used for both axes.

Filters Glyphs 3 Handbook, October 2021 74

Slant skews the selection without optical correction. Click the

Slant label and choose Cursify for an optically corrected skew.

Note that Cursify requires horizontal and vertical metrics to be

set in File → Font Info… →Masters → Stems.

Interpolate with Background Path → Interpolate with
Background results in an interpolation of the foreground and

background layers.

A value of 0 % leaves the foreground unchanged; 100 % replaces

the foreground with the background, and values in-between

result in an interpolated shape. Use a value below 0 % or above

100 % to extrapolate. Note that this filter does not work if the

foreground and background are not compatible. For more details

on interpolation, see chapter 13, ‘Interpolation’ (p. 184).

Custom Parameter The custom parameter rule is as follows:

Transformations; LSB: LSB , RSB: RSB ; Width: Width ;

ScaleX: Scale X ; ScaleY: Scale Y ; Slant: Slant ;

SlantCorrection: Cursify ; OffsetX: X ; OffsetY: Y ;

Origin: Origin Metric

LSB and RSB set the left and right sidebearings. Prefix these

values with a + (plus), - (minus), * (asterisk, multiply), or / (forward

slash, divide) symbol to change the sidebearings relative to their

current values. Width can be prefixed by + or -. For example, to

multiply the LSB by 2 and add 15 to the RSB, use the following

filter rule:

Transformations; LSB:*2; RSB:+15

Scale X and Scale Y are percentages where a value of 100 does

not scale, < 100 scales down, and > 100 scales up. Set Cursify to 0

to disable slant correction; it is 1 by default. Set Origin Metric to

0 for cap height, 1 for ½ cap height, 2 for x-height, 3 for

½ x-height (default), or 4 for baseline.

Filters Glyphs 3 Handbook, October 2021 75

For example, the following rule sets the width of all glyphs to

700, scales the glyph outlines to 120 % (both horizontally and

vertically), cursifies the outlines to a 14° angle (adding

SlantCorrection:0 would use normal slanting), and moves the

outlines by 8 units to the right and 22 units down such that all

these transformations originate from the x-height:

Transformations; Width:700; ScaleX:120; ScaleY:120;

Slant:14; OffsetX:8; OffsetY:-22; Origin:2

6.2.9 Add Extremes

Path → Add Extremes adds missing nodes on extrema. See

section 4.2.14, ‘Extremes & Inflections’ (p. 31) for more details.

The custom parameter rule is the filter name AddExtremes

without any arguments.

6.2.10 Remove Overlap

Path → Remove Overlap removes the overlap of the selected

paths, or all paths if none are selected, or multiple glyphs are

selected. It also clears the selected glyphs of all open paths and

stray nodes. The filter expects all outline orientations to be set

correctly (see section 4.2.13, ‘Controlling Path Direction’, p. 31).

Apply this filter as a custom parameter with the

RemoveOverlap name and no arguments. Alternatively, apply

Remove Overlap by checking its checkbox in the export dialog

(see section 15.1.1, ‘Options’, p. 215).

6.2.11 Third-Party Filters

Install additional filters from the Plugin Manager. These filters are

also listed in the Filter menu and applicable as custom

parameters. Refer to their documentation for details, including

the arguments of the custom parameter. For more details on

installing and managing plug-ins, see section 16.1, ‘Plugin

Manager’ (p. 227).

Filters Glyphs 3 Handbook, October 2021 76

7 Font View

Font View provides an overview of all glyphs of a font. It is

displayed when a new Glyphs file is created. If multiple tabs are

open, jump to Font View by clicking the leftmost tab or

pressing Cmd-Opt-1.

7.1 VIEWING GLYPHS

Font View is available in two viewing modes: Grid View and

List View. Toggle between the modes with the grid and list

buttons in the top left of the font window.

7.1.1 Grid View

In Grid View , the glyphs of the font are displayed in a grid of

glyph cells. The glyph outlines reflect the currently selected

master. Use the slider in the bottom right to control the

cell size. Large glyph cells display the glyph outlines, the glyph

name, and the Unicode value of the glyph. Small cells show only

the outlines.

The Unicode value is shown in the bottom right next to the

glyph name. By default, a small Unicode indicator is displayed.

The Unicode indicator is replaced by a small rendering of the

glyph set in the system font for CJK glyphs. Enable Display

Unicode Value in preferences to show the full Unicode value (see

section 3.2, ‘Appearance’, p. 14). Alternatively, select a glyph cell

to show its Unicode values in the inspector located in the

Glyphs 3 Handbook, October 2021 77

bottom left of the window (see section 7.3.7, ‘Unicode’, p. 84

for details).

A warning triangle in the top right corner of a glyph cell

indicates that the glyph has out-of-sync metrics keys (see p. 146).

A yellow note indicates that the glyph has an annotation on

the active master layer. A black info indicates that the glyph

uses custom glyph properties (see p. 82). A red top left corner

in a glyph cell indicates that not all layers are compatible for

interpolation (see p. 189). A red ring with stroke marks a

non-exporting glyph (see p. 110).

A glyph cell displays its glyph and layer colors. See

section 4.7.4, ‘Glyph & Layer Colors’ (p. 43) for details.

7.1.2 List View

Switch to List View by selecting the list icon located in the

top left of the font window. List View shows a table where each

row corresponds to a glyph and each column to a glyph property.

Click a column header to sort by that column. Click a header

again to reverse the sort order. Click and drag a column header

to rearrange columns. Control-click or right-click a header to

hide or show columns. See section 7.3, ‘Glyph Properties’ (p. 82)

for a description of all glyph properties.

7.2 MANAGING THE GLYPH SET

7.2.1 Adding New Glyphs

New glyphs can be added to a font in various ways:

Font View Glyphs 3 Handbook, October 2021 78

Adding Multiple Glyphs Glyph → Add Glyphs… (Cmd-Shift-G)

opens a dialog window for adding glyphs. Write glyph names

(Aacute, ampersand, noon-ar.init), characters (Á, &, ,(ن or Unicode

values (uni00C1, uni0026, uni0646) separated by spaces into

the text field. Specify character ranges by placing a colon

between two glyphs: ‘uni01FC:uni01FF’ or

‘Abold-math:Zbold-math’. The text field also accepts glyph

recipes. See section 9.1.3, ‘Recipes’ (p. 127) for details.

When adding glyphs that are already in the font, they will not be

added again. Instead, a dialog is shown listing the glyphs that are

already part of the font. Choose Replace to replace the existing

glyphs with new, empty glyphs. Keep Existing ignores the

duplicate glyphs and only adds the new glyphs. Choose Cancel to

not add any new glyphs.

Adding a Single Glyph Glyph → New Glyph (Cmd-Opt-Shift-N)

or the plus button located in the bottom left of Font View

adds a new empty glyph named ‘newGlyph’.

Adding From the Glyph Info Database Choose Window →
Glyph Info to show a list of all glyphs known to Glyphs. Click Add

to Font to add the selected glyphs to the current font. See

section 7.6.1, ‘Glyph Info Database’ (p. 96) for details.

Adding From the Sidebar Some entries in the sidebar show a

badge with the total glyph count for the entry and the count of

glyphs that are already part of the font. Control-click or

right-click a sidebar entry to show a list with the missing glyphs.

Select glyphs from the list individually or select all by pressing

Cmd-A. Add the selected glyphs to the font by clicking Generate.

Font View Glyphs 3 Handbook, October 2021 79

7.2.2 Copying Glyphs Between Files

Glyphs can be copied across font files. In Font View, copy the

selected glyphs with Edit → Copy (Cmd-C) and paste them into

another file with Edit → Paste (Cmd-V). Components are re-linked

to the glyphs in the target font. When a linked glyph does not

exist in the target font, the component cannot be re-linked and

displays as a ‘no base glyph’ triangle placeholder instead. If a

glyph with the same name already exists in the target font, an

incrementing suffix like ‘A.001’, ‘A.002’, … will be added to the

name of the pasted glyph.

Overwrite existing glyphs with Edit → Paste Special (hold down

Option while the menu is open or press Cmd-Opt-V). The Paste

Special dialog presents three paste modes:

Glyphs With Same Name overwrites the glyphs that have the

same names as the copied glyphs. Any glyphs that do not yet

exist in the target font are also added.

Selected Glyphs overwrites all currently selected glyphs in the

target font with the glyphs copied from the source font. The

names of the selected glyphs are kept. If more glyphs were

copied, then there are selected glyphs in the target font, the

additional glyphs are ignored.

As Components pastes the copied glyphs as components into

the selected glyphs. Choose All Masters to paste on all

masters. Existing paths and components are preserved.

For the options Glyphs With Same Name and Selected Glyphs,

Font View Glyphs 3 Handbook, October 2021 80

glyphs can be partially pasted by selecting the desired parts:

All Data pastes the entire glyph, including shapes, anchors, layer

attributes, and metrics. This option includes all of the

options below it.

Content of Active Layer pastes the currently displayed layer.

Kerning Groups pastes the left and right kerning groups. This

option is useful for reduplicating kerning between

similar fonts.

Metric Keys pastes the sidebearing and width formulas.

Recalculate them after pasting with Glyph → Update Metrics

(Cmd-Ctrl-M) or across all masters with Glyph → Update
Metrics for all Masters (Cmd-Ctrl-Opt-M).

LSB, RSB, Width paste the left sidebearing, right sidebearing,

and width metrics of a glyph. If both RSB and Width are

selected, the right sidebearing value takes precedence.

7.2.3 Removing Glyphs

Glyph → Remove Glyph (Cmd-Delete) deletes the selected glyphs

from the font. This command also works on the current glyph in

Edit View and selected glyphs with the Text tool active. In

Font View, the minus button in the lower-left of the window

does the same. Before the selected glyphs are deleted, a

confirmation dialog is shown. Confirm with Remove or keep the

glyphs with Cancel.

If some of the glyphs are used as components, the dialog

offers to decompose the components before deleting the glyphs.

Click Remove to delete the glyphs and all components

referencing them, or click Decompose to delete the glyphs after

decomposing all components of those glyphs to outlines.

If the metrics keys of other glyphs were linked to the metrics

of a deleted glyph, a dialog offers to unlink those metrics. For

example, in a font with two glyphs A and AE (Æ), where the left

sidebearing of AE is linked to the one of A, deleting A means that

AE can no longer reference the metrics of A. The dialog appears

with two choices: Remove dissolves the metrics keys linked to

the deleted glyphs. Cancel keeps the metrics keys, even though

they are no longer linked to a glyph. Such unlinked keys are set in

a turquoise color:

Font View Glyphs 3 Handbook, October 2021 81

Fix unlinked metrics keys by linking them to a different glyph,

replacing the keys with numeric values, or creating the glyph they

are pointing to. See section 10.1.3, ‘Metrics Keys’ (p. 146) for

more details.

7.3 GLYPH PROPERTIES

Glyphs have multiple properties associated with them, such as

their name, metrics, Unicode values, and whether the glyph will

be exported. In Font View, glyph properties are shown in the

bottom left corner of the window in the glyph inspector. If the

inspector is closed, open it with the disclosure button. Glyph

properties are also shown in the columns of List View (see p. 78)

and the Selection Info window (Edit → Info for Selection,

Cmd-Opt-I). Some properties are also accessible from the

context menu on a glyph in Font View and Edit View.

The glyph inspector and the Selection Info window show the

properties of the selected glyphs. Click the disclosure chevron

next to the Unicode field in the glyph inspector to show

additional controls for the production name, script, category, and

subcategory.

When multiple glyphs are selected with different values for the

same property, a mixed value is displayed in the inspector. For

text fields, Multiple Values is shown in gray. Editing such a text

field will overwrite the current value for all selected glyphs with

the new value. The export checkbox
!

uses a line icon
!

,

indicating that some selected glyphs export and some do not.

7.3.1 Glyph Name

Glyphs are identified by their name. Therefore a font cannot

contain two glyphs with the same name. The glyph name (or nice

name) is used within Glyphs, while a separate production name is

used for exported fonts. See section 7.3.8, ‘Production Name’

(p. 85) for details on production names and section 7.6.2, ‘Naming

Glyphs’ (p. 97) for general information about the glyph

naming scheme.

Select glyphs one at a time to display and change their names

or batch rename glyphs with Edit → Find → Find and Replace

Font View Glyphs 3 Handbook, October 2021 82

(Cmd-Shift-F). See section 7.4.3, ‘Batch-Renaming Glyphs’ (p. 89)

for more details.

7.3.2 Metrics

The metric fields show the horizontal metrics (LSB, RSB,

width) or the vertical metrics (TSB, BSB, vertical origin,

vertical width) of a glyph. Click the icon in the middle to switch

between the horizontal and vertical metrics. See chapter 10,

‘Spacing & Kerning’ (p. 145) for information on metrics.

7.3.3 Kerning Groups

Use kerning groups to kern multiple glyphs by the same amount.

See section 10.2.4, ‘Kerning Groups’ (p. 150) for details.

7.3.4 Exports

The Exports checkbox controls whether or not a glyph should be

included in exported font files. Disable this option for component

glyphs and any other glyphs that should not be exported. Use the

‘Remove Glyphs’ custom parameter on an instance to remove

additional glyphs for that instance only. A glyph is exported by

default unless its name starts with an underscore (‘_’).

7.3.5 Color Label

From left to right:

glyph color only (schwa),

no glyph or layer color (f),

glyph and layer color (g),

layer color only (gbreve).

Glyphs and glyph layers can be marked with color labels. Color

labels do not affect the exported fonts but are used to organize

glyphs during font development.

Control-click or right-click a glyph to apply one of the twelve

predefined colors. Click the cross button to remove the color

from a label. Hold down the Option key to define or clear the

color label of the current layer.

The glyph color spans across the entire glyph cell. The layer

color is drawn on the right half of the cell if a glyph color is set or

across the entire cell with a cut-out in the top left if no glyph

color is set. Filter glyphs with a particular color using smart filters.

See section 7.5.4, ‘Smart Filters’ (p. 92) for details.

Font View Glyphs 3 Handbook, October 2021 83

In some cases, such as smart filters or scripts, color labels are

addressed by name or number. The following names and

numbers are used: 0 Red, 1 Orange, 2 Brown, 3 Yellow,

4 Light Green, 5 Dark Green, 6 Cyan, 7 Blue,

8 Purple, 9 Pink, 10 Light Gray, 11 Dark Gray.

7.3.6 Tags

Tags are short descriptions that can be attached to a glyph. A

glyph can have multiple tags. Edit tags in the Tags field in the

inspector located in the bottom left of the font window. Tags can

include letters, numbers, spaces, and other punctuation marks.

Only the comma character (,) is special: Typing a comma or

pressing Return will add the tag to the selected glyphs and

display it in a blue capsule shape. The Tags field shows the tags of

all selected glyphs if they have the same tags. Otherwise, the text

Multiple Values is displayed.

Control-click or right-click a glyph in Font View and choose

the Tags menu. It shows all tags used within the font. If no tags

are used in the font, then the Tags menu is not shown. Tags

included in any of the selected glyphs are marked with a

checkmark next to the tag name. A dash indicates that only

some of the selected glyphs include that tag. Select a tag from

the menu to add it to all selected glyphs.

Tags can be used to filter glyphs, including in smart filters (see

p. 92), metric scopes (see p. 108), and in OpenType feature tokens

(see p. 118).

7.3.7 Unicode

A Unicode value (or codepoint) is a unit of text typed by a user on

a keyboard or stored in a text file. The Unicode standard defines

a codepoint for most written symbols used across the globe.

Unicode values are written as ‘U+’ followed by a hexadecimal

number (digits 0–9 and A–F). For example, U+0041 is the Latin

capital letter A, U+1E900 is the Adlam capital letter Alif, and

U+061F is the Arabic question mark. The font defines which

glyph is displayed for a specific Unicode value.

Typically, one glyph has one Unicode value. In an all-caps font

without lowercase letters, the A glyph might have two Unicode

values: U+0041 and U+0061 (uppercase and lowercase Latin

letter A). This way, typing either ‘A’ or ‘a’ displays the A glyph.

Some glyphs have no Unicode values and are only accessible

Font View Glyphs 3 Handbook, October 2021 84

using OpenType features (see section 8.4, ‘Features’, p. 114).

Glyphs that are solely used as components also have no Unicode

values (see section 9.1, ‘Components’, p. 126).

Glyphs are assigned Unicode values based on their name. The

mapping from glyph names to Unicode values is stored in the

glyph info database. See section 7.6, ‘Names and Unicode’ (p. 96)

for more details.

The Unicode values of a glyph can also be customized per

Glyphs file. Select a glyph and edit Unicode values in the

Unicode field of the inspector. In List View, the codepoints can

also be edited in the Unicode column. Alternatively, choose

Edit → Info for Selection (Cmd-Opt-I) and set the Unicode values

of the selected glyph there.

For custom glyphs that are not defined in the glyph info

database, choose a fitting name (see section 7.6.2, ‘Naming

Glyphs’, p. 97) and set its Unicode value manually.Unicode defines some ranges

(such as U+E000–U+F8FF) as

Private Use Area (PUA) where

the Unicode values have no

predefined meaning. PUA

codepoints are generally used

for languages that are not in

Unicode or icon fonts.

If the Unicode

standard does not offer a suitable codepoint for a glyph, consider

encoding it with a Private Use Area codepoint. When adding a

custom glyph, make sure not to use the name of a registered

glyph from the glyph info database.

Glyphs without a well-defined name (such as most Chinese

characters) are named after their Unicode value: ‘uni’ followed by

four hexadecimal digits or ‘u’ followed by five or six digits. For

example, uni5B57 for U+5B57 and u20547 for U+20547.

7.3.8 Production Name

Not all nice names used within Glyphs (see p. 82) are compatible

with every app. Instead, production glyph names are used for

exported font files. These production names are based on the

Adobe Glyph List Specification (AGL).¹ Many production names

follow the naming scheme as described in the Unicode section

(section 7.3.7, ‘Unicode’, p. 84): ‘uni’ followed by four

hexadecimal digits or ‘u’ followed by five or six digits.

Production names are used automatically on export, while nice

names are used in the Glyphs interface. All glyphs have a default

production name, but it can be changed in the expanded

inspector (expand it by clicking the disclosure chevron) or by

choosing Edit → Info for Selection (Cmd-Opt-I).

1 github.com/adobe-type-tools/agl-specification

Font View Glyphs 3 Handbook, October 2021 85

https://github.com/adobe-type-tools/agl-specification
https://github.com/adobe-type-tools/agl-specification

7.3.9 Script

The script property defines the writing script the glyph belongs

to. The glyph G is ‘latin’, Ya-cy is ‘cyrillic’, noon-ar is ‘arabic’,

koKai-thai is ‘thai’, and so on. Glyphs belonging to multiple

scripts—like digits (one, two, …), punctuation (comma, hyphen, …),

or spaces—do not have a script value.

7.3.10 Category & Subcategory

The category and subcategory of a glyph groups it with related

glyphs. All exporting glyphs belong to a category by default,

while non-exporting glyphs such as components do not. The

glyph T belongs to the category Letter, six to Number, and plus

to Symbol. Some glyphs additionally have a subcategory for finer

differentiation. For example, guillemetright (‘»’) is defined as

Punctuation, Quote; parenleft (‘(’) is Punctuation, Parenthesis;

and hyphen (‘-’) is Punctuation, Dash.

7.3.11 Case

Some scripts differentiate glyphs by case. The case of a glyph can

be uppercase, lowercase, small capital, minor, or no case.

Uppercase and lowercase are used for letters in bicameral scripts

such as Greek or Latin, but also for punctuation (for example,

question (?) is uppercase and questiondown (¿) is lowercase) and

marks (lowercase: acutecomb, uppercase: acutecomb.case).

Glyphs ending in ‘.sc’ or ‘.smcp’ are assigned the small capital

case. The minor case is used for subscript and superscript

numbers (five.sups), letters (ainferior), and punctuation

(equalinferior). All other glyphs have no case, including glyphs

from scripts without case (Arabic or CJK) and most punctuation

glyphs (for instance, comma or euro).

7.3.12 Writing Direction

A glyph has a writing direction of either left to right (LTR),

right to left (RTL), or bidirectional (BiDi). Many punctuation

glyphs are bidirectional (for example, hyphen, asterisk, and

underscore). See section 4.9.4, ‘Writing Direction’ (p. 47) for

setting the writing direction in Edit View.

7.3.13 Sort Name

The Sort Name property of the selected glyph can be edited in

the Selection Info window (Edit → Info for Selection, Cmd-Opt-I).

Font View Glyphs 3 Handbook, October 2021 86

It defines the name by which the glyph is sorted in Font View and

the exported font files. An empty Sort Name field indicates that

the glyph name is used for sorting instead. Select the checkbox

next to the sort name field to edit it. Sort names are not used in

list filters (see p. 94) or when using a custom glyphs order

(see p. 95).

7.3.14 ID

In List View, the ID column sorts glyphs in glyph order. This is the

order in which glyphs are sorted in exported fonts. Change the

order by setting the sort name of glyphs or using the ‘glyphOrder’

custom parameter in File → Font Info… → Font.

7.3.15 Char

In List View, the Char column displays the Unicode character

using the system font. If a glyph has multiple Unicode values,

only the first one is displayed.

7.3.16 Note

Notes are accessible from List View in the Note column. A glyph

note can contain any text. Search for glyph notes with the search

field in Font View (see section 7.5.1, ‘Search Field’, p. 90).

7.3.17 Components

In List View, the components column shows a list of the

components used in a glyph. The components cell in List View

can be edited to add or remove components to or from a glyph.

See section 7.1.2, ‘List View’ (p. 78) for hiding and

showing columns.

7.3.18 Last Changed

The Last Changed column in List View is updated every time a

glyph is modified. Add a ‘Write lastChange’ custom parameter in

File → Font Info… → Font and disable it to prevent Glyphs from

updating this property which might be desirable when keeping

the Glyphs file under version control.

7.4 BATCH-PROCESSING

Use batch-processing operations to make changes to one or

multiple glyphs at once.

Font View Glyphs 3 Handbook, October 2021 87

7.4.1 Selecting Glyphs

Batch-processing commands operate on all selected glyphs.

Select all glyphs currently shown in Font View by choosing Edit →
Select All (Cmd-A). Choose Edit → Deselect All (Cmd-Opt-A) to

cancel the selection. Edit → Invert Selection (Cmd-Opt-Shift-I)

selects only the glyphs that are currently unselected. Inverting the

selection is useful to select all glyphs except for a few exceptions:

Select the exceptions first and then invert the selection.

7.4.2 Batch Commands

The following commands from the Glyph and Path menus are

applied to all selected glyphs. Commands with an asterisk (*) can

be applied to all masters at once by holding down the Option key.

Glyph → Remove Glyph (Cmd-Delete)

Glyph → Duplicate Glyph (Cmd-D)

Glyph → Update Glyph Info

Glyph → Update Metrics * (Cmd-Ctrl-M)

Glyph → Transform Metrics (see section 6.2.8, ‘Transform

Metrics’, p. 73)

Glyph → Add Component * (Cmd-Shift-C)

Glyph → Create Composite * (Cmd-Ctrl-C)

Glyph → Decompose Components * (Cmd-Shift-D)

Glyph → Add Image… (see section 7.7, ‘Images’, p. 101)

Glyph → Set Anchors * (Cmd-U)

Glyph → Reset Anchors * (Cmd-Shift-U)

Path → Reverse Contours (Cmd-Ctrl-Opt-R)

Path → Correct Path Direction * (Cmd-Shift-R)

Path → Round Coordinates *

Path → Tidy up Paths * (Cmd-Shift-T)

Path → Add Extremes, or hold down Option for Force Extremes

(see section 4.2.14, ‘Extremes & Inflections’, p. 31)

Path → Remove Overlap * (Cmd-Shift-O)

Path → Transformations (see section 6.2.8, ‘Transformations’, p. 74)

Path → Selection to Background (Cmd-J), or hold down Option

for Add Selection to Background (Cmd-Opt-J)

Font View Glyphs 3 Handbook, October 2021 88

Path → Assign Background…, or hold down Option for Clear

Background.

Path → Swap with Background (Cmd-Ctrl-J)

Path → Interpolate with Background (see section 6.2.8,

‘Interpolate with Background’, p. 75)

Path → Other → Convert to Cubic

Path → Other → Convert to Quadratic

7.4.3 Batch-Renaming Glyphs

Rename glyphs by searching and replacing parts of glyph names.

Select the glyphs for which parts of their name should be

replaced, choose Edit → Find → Find and Replace… (Cmd-Shift-F),

and enter the text to be replaced in the Find field. Then, enter the

replacement in the Replace field and confirm by clicking Replace.

The Replace text will replace all occurrences of the Find text in

any of the selected glyph names.

For example, search for ‘.001’ and replace it with ‘.alt’ or ‘.sc’.

Or search for ‘-cyrillic’ and replace it with ‘-cy’. See section 7.6.2,

‘Naming Glyphs’ (p. 97) for details on good glyph names.

Leave the Find field empty to

append the Replace text to all

selected glyph names.

Select the Regex checkbox to enable regular expression matching.

Regular expressions can find and replace patterns of characters.

The example above searches for ‘.cv’ followed by two digits and

replaces that part with ‘.ss’ followed by the same two digits. This

Font View Glyphs 3 Handbook, October 2021 89

would replace ‘someglyph.cv03’ by ‘someglyph.ss03’ or

‘otherglyph.cv15.alt’ by ‘otherglyph.ss15.alt’. The dot ‘.’ has a

special meaning in regular expressions and is thus preceded by a

backslash ‘\’ in the Find field. ‘\d’ matches any digits from 0 to 9,

and the parentheses around the ‘\d\d’ allow the two digits to be

references in the Replace field by ‘\1’. See section 17.1, ‘Regular

Expressions’ (p. 232) for details.

7.4.4 Filters

Filters can be applied to all selected glyphs from Font View. See

chapter 6, ‘Filters’ (p. 66) for details on how to apply filters.

7.4.5 Palette

Many of the controls in the Palette (Cmd-Opt-P) can be used

from Font View. Both Fit Curve and Transformations operations

can be applied to all selected glyphs. Palette sections provided

by third-party plug-ins may also allow batch editing in Font View.

Controls that do not operate on the entire glyph but only the

selected nodes (such as Fit Curve) use the selection set in

Edit View. See chapter 5, ‘Palette’ (p. 60) for details on the

individual Palette sections.

7.4.6 Plug-ins & Scripts

Some plug-ins and scripts can be applied to all selected glyphs at

once. Refer to their documentation for guidance on batch editing.

7.5 FILTERING & SORTING

Font View can be filtered only to show a subset of glyphs. Filter

glyphs using search, glyph categories, scripts, languages, and

custom filter rules.

At the bottom-center of Font View, the number of selected,

visible, and total glyphs is shown. The number of visible glyphs

depends on the selected sidebar filter and the search query.

Select All at the top of the left sidebar and clear the search field

to show all glyphs of the font.

7.5.1 Search Field

In the top left of Font View is the glyph search field (Cmd-F).

Enter text to search by glyph name (‘dieresis’), Unicode value

(‘03C3’), Unicode character (þ), or glyph note (see section 7.3.16,

‘Note’, p. 87). Click the search glass icon to search only by

Font View Glyphs 3 Handbook, October 2021 90

name, Unicode value, or note.

Select Match Case to search only for glyphs matching the

capitalization of the search term. With this option selected,

searching for ‘Aring’ would find Aring and Aringacute, but not

aring or aringacute.

Select Regex to search using regular expressions. Regular

expressions match patterns of characters. For example, ‘.’

matches any character and thereby finds all glyphs with a single

character name. Searching for ‘..’ finds glyphs with

two-character names, ‘.*\.sc’ finds all glyphs ending in ‘.sc’, and

‘[Aa].*-cy’ finds all glyphs starting with an ‘A’ or ‘a’ and ending

in ‘-cy’. Note that glyph names must match the entire regular

expression. See section 17.1, ‘Regular Expressions’ (p. 232)

for details.

7.5.2 Categories

Select a category filter in the left sidebar to show only the glyphs

belonging to the selected category. Click the disclosure

chevron next to a category name to show its subcategories.

Select a subcategory to show only those glyphs. The number of

glyphs in a subcategory is shown next to the subcategory name.

If Glyphs can infer that some glyphs in the subcategory might be

missing, the count is replaced by a gray badge showing both

the current count and the total count of glyphs in the

subcategory. Add the missing glyphs as described in section 7.2.1,

‘Adding From the Sidebar’ (p. 79). If all glyphs have been added, a

checkmark is displayed instead of a gray badge.

When multiple categories are selected by Command-clicking,

glyphs from any of the selected categories are shown. If a

Categories entry is selected together with a Languages or Filters

entry, only glyphs that are part of both are displayed.

7.5.3 Languages

The Languages section contains script and language filters.

Expand a language filter by clicking the disclosure chevron

next to the filter name. Glyph counts, badges, and checkmarks

appear the same as in categories (see above). Command-click

script names to filter for multiple scripts at the same time, or

Command-click other filters to combine them with the selected

language filters.

Only a few scripts are shown by default in the sidebar to keep

Font View Glyphs 3 Handbook, October 2021 91

the list short and tidy. Click the plus button next to the

Languages label to edit the default list of scripts. A list opens

where individual scripts can be shown or hidden by toggling the

checkbox next to their name. A script entry is automatically

added to the sidebar if the font contains glyphs of that script.

7.5.4 Smart Filters

Smart filters show glyphs that match a set of rules. They appear

in the Filters section of the left sidebar and are identified by a

gear icon. Add a smart filter by clicking the actions menu

button located in the bottom left of the font window and

choosing Add Smart Filter. Edit an existing smart filter by

double-clicking its gear icon or choose Edit Filter from the

actions menu for a selected filter.

Adding or editing a smart filter opens the smart filter editor

window. It controls the name and the rules of a smart filter. The

name of the smart filter will appear in the filters sidebar. The rules

define which glyphs to include in the filtered group.

When adding a new filter, only one rule is shown in the editor.

Add additional rules by clicking a plus button and remove a

rule by clicking the minus button next to it.

The following filter rules are available:

Glyph Name The name (see p. 82) of the glyph.

Count of Paths The number of paths of the first master layer.

Font View Glyphs 3 Handbook, October 2021 92

Count of Components The number of components (see p. 126)

of the first master layer.

Tags The tags (see p. 84) of the glyph.

Script The script (see p. 86) to which the glyph belongs.

Category & Subcategory The category and subcategory (see

p. 86) of the glyph.

Case Whether the glyph is uppercase, lowercase, small capital, or

has no associated case.

Master Compatible Whether the masters can be interpolated

(see p. 184).

Export Glyph Whether the glyph is included in exported font

files (see p. 110).

Has Unicode Whether the glyph has at least one Unicode value

(see p. 84).

Has Components Whether the layer of the selected master of

the glyph contains components (see p. 126). Use Contains

Component to check if a specific component is on the layer.

Has Hints Whether the layer of the selected master has any

manually placed hints.

Has PostScript Hints Whether the layer of the selected master

has any manually placed PostScript hints (see p. 155).

Has TrueType Hints Whether the layer of the selected master

has any manually placed TrueType hints (see p. 164).

Has Corners Whether the layer of the selected master contains

corner components (see p. 138).

Has Anchors Whether the layer of the selected master contains

any anchors (see p. 34).

Contains Component Whether the layer of the selected master

contains a specific component (see p. 126). Use Has

Components to check whether there are any components on

the layer.

Has Special Layers Whether the glyph has any special layers

(see p. 62).

Has Custom Glyph Info Whether the glyph uses custom glyph

info deviating from the glyph info database (see p. 96).

Has Annotations Whether the layer of the selected master

contains annotations (see p. 52).

Font View Glyphs 3 Handbook, October 2021 93

Is Auto-Aligned Whether the layer of the selected master is

automatically aligned (see p. 130).

Has Metrics Keys Whether any of the glyph metrics use metrics

keys (see p. 146).

Metrics Keys Out of Sync Whether any metrics keys (see p. 146)

are out of sync and need to be updated.

Has Kerning Groups Whether the glyph uses kerning groups

(see p. 150).

Color Label The color label (see p. 83) of the glyph. Compare

with Not Set to filter for glyphs without a color label.

Layer Color Label The color label (see p. 83) of the layer of the

selected master. Compare with Not Set to filter for layers

without a color label.

Is Hangul Key Whether the glyph is a Hangul key according to

the ‘Hangul Composition Groups’ custom parameter.

Custom This filter rule can contain a custom glyph predicate

expression. Such an expression is formulated like a glyph

predicate token; see section 8.4.4, ‘Glyph Predicate Tokens’

(p. 118) for details.

Rules can also be nested, such that all of the rules in a group

must apply, at least one of the rules in a group must apply, or

none of the rules in a group may apply for a glyph to be included

in the filter. Create a group of rules by holding down the Option

key and clicking the dots button. Then, pick Any (at least one

nested rule must match), All (all nested rules must match), or

None (no nested rule may match).

7.5.5 List Filters

A list filter shows all glyphs that are specified in a list of glyph

names. List filters appear in the Filters section in the left sidebar

with a list icon. Add a list filter by clicking the actions menu

button located in the bottom left of the font window and

choosing Add List Filter. By default, all selected glyphs are added

to the list filter.

Tip: In Font View, make a

selection of glyphs and then

choose Copy Glyph Names →

One per Line to copy the

glyph names in a format

suitable for list filters. See also

section 7.6.4, ‘Copy Glyph

Names’ (p. 99).

Glyph names are separated by spaces or line

breaks. Edit an existing list filter by double-clicking its list icon or

choosing Edit Filter from the actions menu.

Change the name of a filter with the Name text field at the top

of the list field editor window. Click OK to confirm or click Cancel

to discard any changes to the list filter. Select a list filter from the

Font View Glyphs 3 Handbook, October 2021 94

sidebar to see all glyphs of the font that are in the list. Glyphs are

sorted in the order of the list. See section 7.2.1, ‘Adding From the

Sidebar’ (p. 79) for details on adding glyphs from a list filter.

7.5.6 Manage Filters

Reorder filters by dragging them up and down in the filters list.

Choose Add Folder from the actions menu to create a filter

folder . Click and drag to move a filter into a folder. Folders

can also be put into other folders. Hold down the Command key

to select multiple filters, or hold down Shift to select a range of

filters. Font View shows all glyphs that are in at least one of the

selected filters. Select a folder to show all glyphs belonging to

any of the contained filters.

Quickly edit a smart filter or list filter by double-clicking its

gear or list icon. Double-click a filter name to rename it

without opening the editor window. Or, select a filter and press

Return to rename it.

Delete a filter by choosing Remove Filter from the actions

menu . This also works for filter folders. Note that removing a

folder will also remove all filters inside it.

7.5.7 Custom Categories & Languages

The Filters sidebar section is customizable directly from within

Glyphs (as described in sections 7.5.4, 7.5.5, and 7.5.6 above).

Custom entries in the Categories and Languages sections can be

added by creating a Groups.plist file in the Glyphs Info folder.

See Custom Sidebar Entries in Font View² for details.

7.5.8 Glyphs Order

Categories, languages, and filters do not influence the glyphs

order in the exported font. Instead, glyphs are ordered by their

sort name (see p. 86). Define a custom order for all glyphs of the

font with the ‘glyphOrder’ custom parameter in File → Font
Info… → Font (Cmd-I). The parameter takes a list of glyph names,

one name per line. The order of glyphs is used both in Font View

and in exported font files.

When opening an OTF or TTF font file, Glyphs preserves the

glyph order of the file by automatically adding a ‘glyphOrder’

custom parameter when Keep Glyph Names from Imported Files

is selected. See section 3.3, ‘User Settings’ (p. 15) for details.

2 glyphsapp.com/learn/custom-sidebar-entries-in-font-view

Font View Glyphs 3 Handbook, October 2021 95

https://glyphsapp.com/learn/custom-sidebar-entries-in-font-view
https://glyphsapp.com/learn/custom-sidebar-entries-in-font-view

7.6 NAMES AND UNICODE

7.6.1 Glyph Info Database

Glyphs contains a glyph info database. For each glyph, the

database defines:

the nice glyph name that is used within Glyphs;

the production name that is used on export;

the associated Unicode value, when there is one;

the components, in the case of composite glyphs;

a default set of anchors;

the associated marks displayed in the mark cloud (see p. 14);

the script of the glyph;

the category and subcategory of the glyph.

Glyphs uses two kinds of names: nice names and production

names. Nice names are used within Glyphs and are intended to

be readable for humans. Production names are used in exported

font files and are intended to be read by computers. See

section 7.3.1, ‘Glyph Name’ (p. 82) and section 7.3.8, ‘Production

Name’ (p. 85) for details on both.

Glyphs uses its glyph info database to convert between nice

names, production names, and Unicode values. This glyph info

database can be viewed by choosing Window → Glyph Info. All

glyphs stored in the database are displayed in a searchable table.

Click a column header to sort the table by that column.

Use the methods described in section 7.3, ‘Glyph Properties’

(p. 82) to override the glyph properties of individual glyphs for a

single Glyphs file. Make changes to glyph properties for all

Font View Glyphs 3 Handbook, October 2021 96

Glyphs files by creating a custom GlyphData.xml file.³

Suffixed glyphs inherit the glyphs info properties of their

unsuffixed counterpart. For example, A.alt, A.ss01, and A.001 all

use the same glyph properties as the unsuffixed glyph A.

However, names like Aalt, Ass01, or A001 would not inherit any

properties since they are missing the dot between the base name

and the suffix. While such glyph names are valid, they require all

properties to be set up manually. If possible, it is best to use

glyph names from the glyph info database and use dot suffixes

for glyph variants. See section 17.3, ‘Automatic Feature

Generation’ (p. 234) for details on how specific dot suffixes can

help generate OpenType features, automatically.

7.6.2 Naming Glyphs

Glyph names appear underneath their glyph cell in Grid View or

their column in List View. Edit a glyph name by clicking it once.

When adding a glyph by character (ä) or by Unicode name

(‘uni00E4’), Glyphs will automatically assign a nice name to the

glyph (adieresis in this case).

Based on the glyph name, Glyphs can automatically assign

Unicode values, a glyph category, subcategory, and generate

OpenType features. See section 7.2.1, ‘Adding New Glyphs’ (p. 78)

for more details.

This automated glyph renaming can be disabled for a font in

File → Font Info… → Other → Use Custom Naming. Note that

automatic feature code generation or automated assignment of

categories does not work with custom names. Using a custom

glyph info database (see p. 96) can provide automated behavior

like assigning Unicode values or categories based on

glyph names.

Unicode-value-based glyph names start with ‘uni’ followed by

four hexadecimal digits or ‘u’ followed by five or six digits. See

section 7.3.7, ‘Unicode’ (p. 84) for details.

7.6.3 Glyph Naming Rules

A font containing glyphs with invalid names cannot be exported.

Ensure that every glyph name

only contains letters A–Z and a–z, numerals 0–9, underscore (‘_’),

hyphen (‘-’) or period (‘.’);

3 glyphsapp.com/learn/roll-your-own-glyph-data

Font View Glyphs 3 Handbook, October 2021 97

https://glyphsapp.com/learn/roll-your-own-glyph-data
https://glyphsapp.com/learn/roll-your-own-glyph-data

starts with a letter (except for non-exporting glyphs and the

special .notdef glyph).

In particular, glyph names may not contain white space

characters (space, tab, line break) or non-ASCII characters.

In this export results dialog, an

error for the Glyph named ‘₹’

is shown. The glyph should

instead use the name

‘rupeeIndian’.

Not adhering to these guidelines yields an error message at

export time stating ‘Illegal glyph name’, followed by an

explanation of where the invalid character is located in the glyph

name. Click the Show button to open the invalid glyph in a new

tab. Such error messages can also occur when trying to compile

the OpenType feature code in File → Font Info… → Features.
A glyph whose name starts with an underscore is not exported

by default. These names are used by component glyphs such as

_part.something, _smart.something, _cap.something, or

_corner.something. See section 9.1, ‘Components’ (p. 126) for

details on component glyphs and their naming rules.

Hyphens are used to indicate the script a glyph belongs to.

Most Latin and Greek glyphs have no hyphen suffix. This way, the

glyph named A represents the Latin A, A-cy represents the Cyrillic

A, and Alpha represents the Greek A. Arabic uses the suffix ‘-ar’,

Hebrew uses ‘-hb’, Korean uses ‘-ko’, and Thai uses ‘-thai’. Open

the Glyph Info window (see p. 40) for all available script suffixes.

Special glyphs used in mathematics (‘-math’), Braille (‘-braille’),

Fraktur (‘-fraktur’), or music (‘-musical’) also use this naming

scheme. Some glyphs, like the Han glyphs used in Chinese, do

not have a nice name and use the Unicode name instead.

Alternate glyphs such as small caps and initial/medial/final

forms use a dot suffix: The name is the same as the regular glyph

but followed by a period (.) and an identifier. For example, the

small caps alternate of the glyph x is named x.sc and the initial

form of noon-ar is noon-ar.init. Some suffixes are recognized by

Glyphs and used to generate OpenType features automatically.

See section 17.3, ‘Automatic Feature Generation’ (p. 234) for a list

Font View Glyphs 3 Handbook, October 2021 98

of all special glyph name suffixes.

Dot-suffixes can be chained. For the automatic feature

generation to work, suffixes should be ordered in the same order

as the features in File → Font Info… → Features. For example,

x.sc.ss01 is the name of the glyph x as a small cap with the first

stylistic set enabled since stylistic sets are typically ordered after

small caps.

Ligature glyphs combine the names of their components with

an underscore. For example, f_f_l is the ffl Ligature. Script and

alternate suffixes can also be applied to ligature names. Suffixes

must be added only at the end of the name and not for every

component. For example, the ligature of lam-ar and alif-ar is

named lam_alif-ar, and its final form is named lam_alif-ar.fina.

7.6.4 Copy Glyph Names

Control-click or right-click a glyph or a selection of multiple

glyphs and choose from the Copy Glyph Names menu how to

write the glyph names to the pasteboard.

The glyph names can be written in a variety of formats to the

pasteboard:

Space Separated The names are formatted on a single line and

joined by single space characters. Example: ‘one two three’.

One per Line Copies the glyph names with each name on its

own line and no other separator characters.

Comma Separated Formats the glyph names on a single line

with a comma and a space after each glyph name. Example:

‘one, two, three,’.

Slashed Prefixes each glyph name with a slash ‘/’ and joins them

Font View Glyphs 3 Handbook, October 2021 99

together on a single line. Example: ‘/one/two/three’. This

format can be pasted into Edit View.

Python List Formats the names as items of a Python list. Each

name is enclosed in double quotes (") and separated by

commas and line breaks. This format is useful when working

with the Macro Panel or when writing scripts. Example:

"one",

"two",

"three",

Unicodes Writes the Unicode values of the glyphs as

hexadecimal numbers to the pasteboard, one per line. Values

are padded to at least four digits with leading zeros. Glyphs

without Unicode values are written as ‘- # someGlyph’. If a

glyph has multiple Unicode values, they are written on the

same line and separated by a comma and a space. Example:

005B

005D

- # bracketleft.case

- # bracketright.case

27E8, 3008

27E9, 3009

7.6.5 Renaming Glyphs

Click a glyph name to edit it. Changing a glyph name will also

change some of its properties, such as the Unicode value or the

category. If only the suffix after the period is changed, no

properties will be modified since the base name stays the same.

For example, renaming eacute to plus will change the glyph

properties, while renaming eacute.sc to eacute.pc will not.

See section 7.4.3, ‘Batch-Renaming Glyphs’ (p. 89) for details

on renaming multiple glyphs at once.

7.6.6 CID Mapping

CJK fonts use CID mapping, where glyphs are not accessed by

glyph name but by a character identifier (CID). Glyphs can map

nice glyph names to CIDs. A ROS (Registry, Ordering,

Supplement) determines which glyph is assigned to which CID.

Exporting glyphs that the ROS does not cover are added to the

end of the CID mapping at export.

Font View Glyphs 3 Handbook, October 2021 100

7.7 IMAGES

Add an image by dragging it from Finder onto a glyph cell. The

image will be added to the currently active layer. Alternatively,

choose Glyph → Add Image… to insert an image file to the

selected glyph.

Add images to multiple glyphs at once by choosing Glyph →
Add Image… and then selecting multiple image files. The images

will be placed on the layer of the current master of the glyphs

that correspond to an image name. For example, Thorn.png is

added to the glyph Thorn, and Djecy.jpeg is added to Dje-cy.

Note that while glyph names are case-sensitive (A is different

from a), file names in macOS are case-insensitive, by default

(A.png is considered the same file name as a.png). Uppercase

and lowercase files can thus not coexist in the same folder. As a

workaround, place images for uppercase letters in a different

folder than lowercase letters.

Images are shown in Font View when View → Show Image is

selected. If a glyph is empty (no paths or components are placed

in the glyph), the image is displayed regardless of the Show Image

option. See section 4.12, ‘Images’ (p. 54) for information on

working with images in Edit View.

Font View Glyphs 3 Handbook, October 2021 101

8 Font Info

The Font Info window contains general information about a

Glyphs file, such as the font family name, the masters, the

exported font instances, and the OpenType features. Open

Font Info by choosing File → Font Info… (Cmd-I) or click the

Info button located in the top left of the main window.

Font Info is split into multiple tabs. The Font, Masters, and

Exports tabs control the font metadata with rows of fields. Click

the plus button to the right of the bold headings to add

additional fields. Click the minus button to the right of a row

to delete it. For rows with a plus button to the right, hold down

the Option key to reveal the minus button. Alternatively, click a

row to select it, then delete it by pressing Cmd-Delete.

!
"Default
!
"German
!
"French
!
"Italian
!
"Chinese (Simplified)

Localized Family Names

Family Name

Handbook

Handbook

Handbuch

Manuel

Manuale

⼿册

Some fields can be localized into multiple languages. These

display a language menu and a plus button to the right of the

field. Click the plus button to add additional localizations and

pick the respective language from the languages menu.

Select one or multiple rows by Command-clicking and copy

them by choosing Edit → Copy (Cmd-C). Paste rows with Edit →
Paste (Cmd-V).

8.1 FONT

The Font tab contains information that applies to all exported

font files. Click the plus button to the right of the General

heading to add additional fields.

The Axes (see p. 106) and Custom Parameters (see p. 106) of

the Font tab are described in more detail at the end of

this section.

8.1.1 Family Name

The ‘Family Name’ is the name given to the exported fonts. This

name will appear in font menus. Fonts with the same family

Glyphs 3 Handbook, October 2021 102

name will be grouped into the same styles submenu. A family

name should only contain ASCII letters (a–z and A–Z), digits (0–9),

and spaces. Any other characters may prevent the fonts from

exporting or installing.

Add the ‘Localized Family Names’ field to provide a family

name containing non-ASCII characters or to localize the family

name into multiple languages. Click the plus button to the

right of the General heading, select ‘Localized Family Names’,

and click Add.

Name IDs refer to the entries

of the OpenType Naming

Table stored in OTF and TTF

fonts. See the OpenType

name table specification¹ for a

list of all possible name

table entries.

Glyphs uses the family name to derive the file name and the

entries for the Name IDs 1, 3, 4, and 6. In PostScript/CFF-based

OpenType fonts, the family name is also used for the FontName

and FullName in the CFF table. Add the ‘Font Name’ and ‘Full

Name’ fields in File → Font Info… → Font → General to control

those values independently of the family name.

The font name can be overwritten by instances using the

‘Localized Family Names’ field.

8.1.2 Units per Em

The ‘Units per Em’ (UPM) determines the number of coordinate

units in the em square of each glyph. Increasing the UPM can

improve the representation of fine details as it increases the

placement options of the nodes. 1000 UPM is the default for new

Glyphs files. The OpenType specification allows values between

16 (2⁴) and 16,384 (2¹⁴), but values above 5000 can lead to

problems in Adobe InDesign and Illustrator. Some applications

have issues with values above 3000 UPM.

Additionally, the coordinates of points (nodes and handles)

may not exceed ±32,768, and glyph widths in

PostScript/CFF-flavor fonts can be problematic beyond

4096 UPM (2¹²). Thus, if the design of the font requires higher

precision, it may be better to change the Grid Spacing and

Subdivision values. See section 8.5.1, ‘Grid Spacing & Subdivision’

(p. 122) for more details.

Click the double-arrow button next to the text field to scale

the entire font to a different UPM. Scaling changes the UPM and

glyph outlines together, keeping the apparent size of the glyph

outlines the same. Enlarge all glyph outlines of the font by setting

the UPM to a smaller value without scaling (for example, from

1000 to 800) and then scale the UPM back to its original value

1 docs.microsoft.com/typography/opentype/spec/name

Font Info Glyphs 3 Handbook, October 2021 103

https://docs.microsoft.com/typography/opentype/spec/name#nid1
https://docs.microsoft.com/typography/opentype/spec/name#nid3
https://docs.microsoft.com/typography/opentype/spec/name#nid4
https://docs.microsoft.com/typography/opentype/spec/name#nid6
https://docs.microsoft.com/typography/opentype/spec/name

(for example, 1000). Change the UPM to a smaller value and scale

back to the original UPM for smaller outlines.

Consider using the ‘Scale to UPM’ custom parameter on an

instance to change the UPM value for exported files, scaling

glyph outlines and metrics to fit the new UPM value. Use the

‘Units per Em’ custom parameter to change the UPM without

scaling outlines or metrics.

8.1.3 Version

The ‘Version’ field is split into a major and minor version,

separated by a period. The version of a new Glyphs file is ‘1.000’.

Click the stepper buttons to change the minor version.

See the OpenType head

specification² for more details.

The major and minor versions of the font are written as the

‘fontRevision’ entry in the Header table (head) of the font.

Additionally, Glyphs derives the Version String (Name ID 5) from

the Version entry by appending its own version to the font

version before writing the version string. For example, ‘Version

1.000;FEAKit 1.0’ (FEAKit is software that Glyphs uses

internally).

Use the ‘Version String’ parameter to define a custom version

string. Note that some applications require this version string to

begin with ‘Version’ followed by the major version, a period, and

the minor version. Consult the OpenType specification for details.

8.1.4 Date

The ‘Creation Date’ field stores the creation date of the font. This

entry is used for the ‘created’ and ‘modified’ dates in the

head table.

8.1.5 Designer & Designer URL

The ‘Designer’ field stores the name of the typeface designer and

corresponds to Name ID 9.

The ‘Designer URL’ field stores the URL of the designer,

typically the URL of the designer’s website, and corresponds to

Name ID 12. This field must include the URL scheme (such as

https), for example:

Designer Example Designer

Designer URL https://example.com/designers/example

The ‘Designer’ field is localizable.

2 docs.microsoft.com/typography/opentype/spec/head

Font Info Glyphs 3 Handbook, October 2021 104

https://docs.microsoft.com/typography/opentype/spec/name#nid4
https://docs.microsoft.com/typography/opentype/spec/name#nid5
https://docs.microsoft.com/typography/opentype/spec/name#nid9
https://docs.microsoft.com/typography/opentype/spec/name#nid12
https://docs.microsoft.com/typography/opentype/spec/head

8.1.6 Manufacturer &Manufacturer URL

The ‘Manufacturer’ field stores the name of the manufacturer and

corresponds to Name ID 8.

The ‘Manufacturer URL’ field stores the URL of the

manufacturer, typically the URL of the manufacturer’s website,

and corresponds to Name ID 11. This field must include the URL

scheme (such as https), for example:

Manufacturer Example Manufacturer

Manufacturer URL https://example.com

The ‘Manufacturer’ field is localizable.

8.1.7 Copyright

The ‘Copyright’ field stores a copyright notice for the font and

corresponds to Name ID 0. A typical copyright notice is

‘Copyright 2021 Some Name. All rights reserved.’ This field is

localizable.

8.1.8 License & License URL

The ‘License’ field stores a description of the license under which

the font is distributed and corresponds to Name ID 13. This field

is localizable.

The ‘License URL’ field stores the URL to additional licensing

information and corresponds to Name ID 14. This field must

include the URL scheme (such as https).

8.1.9 Trademark

The ‘Trademark’ field notes the trademark holders of the font, if

any, and corresponds to Name ID 7. The trademark notice should

be based on legal advice. This field is localizable.

8.1.10 Description

The ‘Description’ field stores a description of the typeface, which

may include revision information, usage recommendations,

history, features, and other information related to the font. This

field corresponds to Name ID 10 and is localizable.

8.1.11 Sample Texts

The ‘Sample Text’ field stores a sample text for the font preview

in font management software and corresponds to Name ID 19.

Font Info Glyphs 3 Handbook, October 2021 105

https://docs.microsoft.com/typography/opentype/spec/name#nid8
https://docs.microsoft.com/typography/opentype/spec/name#nid11
https://docs.microsoft.com/typography/opentype/spec/name#nid0
https://docs.microsoft.com/typography/opentype/spec/name#nid13
https://docs.microsoft.com/typography/opentype/spec/name#nid14
https://docs.microsoft.com/typography/opentype/spec/name#nid7
https://docs.microsoft.com/typography/opentype/spec/name#nid10
https://docs.microsoft.com/typography/opentype/spec/name#nid19

Note that such software may not use the provided sample string.

This field is localizable.

8.1.12 Axes

The Axes define design axes for interpolation and variable fonts.

Click the plus button to the right of the Axes heading to add a

new axis. An axis has a name, a four-character tag, and can be

hidden or not.

Glyphs offers a range of predefined axis names. Selecting one

of the predefined names will change the tag. Select the Hidden

checkbox to hide the axis from font users.

See chapter 13, ‘Interpolation’ (p. 184) for details on working

with axes across multiple masters and specifically section 13.2,

‘Setting up Axes’ (p. 186) for details on the usage of axes in

variable fonts.

8.1.13 Custom Parameters

Additional font configurations can be specified using custom

parameters. Click the plus button to the right of the Custom

Parameters heading to add a new parameter. A list of custom

parameters is shown. Use the search or scroll the list to find the

desired parameter. Click a parameter name in the list to get a

description and click Add to add the selected parameters

to the font.

8.2 MASTERS

A master is a set of specifically designed and configured glyph

outlines and metrics. From the masters setup in a Glyphs file,

font instances are calculated and exported as OpenType font files.

See section 8.3, ‘Exports’ (p. 110) for details.

8.2.1 Managing Masters

When a new Glyphs file is created, the font has one Regular

master. At the bottom of the Masters tab are buttons for adding

and deleting masters. Click the plus button to add a new

master using one of the following options:

Add Master adds a new, empty master. All glyph layers are

empty, and the metrics are set to their default values.

Add Other Font shows a list with all masters of the fonts

currently open in Glyphs. Select one or more masters and

Font Info Glyphs 3 Handbook, October 2021 106

import them by clicking OK. Click Cancel to not import

any masters.

Duplicate Selected duplicates the masters that are currently

selected in the Masters tab. The new masters will have the

same name, glyph layers, and metrics as the selected masters.

Consider renaming the duplicate masters to distinguish them

from the original masters.

Click the minus button located in the bottom left of the

Font Info window to delete the selected masters.

Reorder masters by dragging them to the desired position in

the masters list. The first master in the list has special relevance

for glyph-level hinting information (unless the ‘Get Hints From

Master’ parameter is set). See section 11.3, ‘Manual hinting’

(p. 160) and chapter 12, ‘TrueType Hinting’ (p. 164).

Master properties such as the name, metrics, and custom

parameters can also be edited for several selected masters at

once. Properties that do not share a common value are indicated

with a gray Multiple Values text.

8.2.2 General

In File → Font Info… →Masters → General, define the name of a

master and its icon. The master name is only used internally by

Glyphs and not by exported font files. Use instances (see p. 110)

to define the exported font files.

The master icon can be a glyph from the font or one of 25

predefined lowercase n glyphs in various widths or weights. Click

the master icon to choose a predefined image or write a glyph

name into the text field at the bottom of the icon picker to use

that glyph as the icon.

8.2.3 Axes Coordinates

The Axes Coordinates indicate the position of a master in the

design space. The design space is defined by the axes in the Font

tab (see p. 106). For example, a font with two axes—width and

weight—has a two-dimensional design space. A master can then

be placed anywhere within that design space. See section 13.3,

‘Setting up Masters’ (p. 186) for details on placing masters in a

design space.

Font Info Glyphs 3 Handbook, October 2021 107

8.2.4 Metrics &Alignment Zones

Master metrics define the baseline of the font, offsets from that

baseline, and other values such as the angle of slope of italic

glyphs. In Edit View, the metrics are displayed as orange

alignment lines (when View → Show Metrics is selected). The

default metrics are set according to the script and language

selection. For example, Latin fonts have the following default

vertical metrics:

Ascender The height reached by the ascenders of letters such as

b, d, f, h, k, l, þ, or ß.

Cap Height The height of capital letters such as H, T, or W

without overshoot.

x-Height The height of short lowercase letters such as x, a, c, e, n

without overshoot.

Baseline The position on which letters are placed, always 0.

Descender The depth reached by descending letters such as Q,

g, j, þ, or q. This value is negative since it is below the baseline.

Italic Angle The angle of slope of the italic glyphs stems. This

value affects several elements, including the sidebearings

calculation, the anchors alignment between selected nodes,

and transformations that take the italic angle into account.

The value is in degrees clockwise.

Other scripts use different default metrics. For example, an

Arabic font has the default metrics of Ascender, Baseline,

Descender, Alef Height, Joining Line, and Meem Depth.

Click the name of a metric to edit its category, name, and scope.

The category is the metric type, and the name can be chosen

freely to identify the metric. The scope limits the metric to a

Font Info Glyphs 3 Handbook, October 2021 108

subset of glyphs. For example, scoping a metric to glyphs with a

Devanagari script hides its alignment line in all other glyphs. See

section 7.5.4, ‘Smart Filters’ (p. 92) for details on glyph scopes.

The left number field of a metric defines the offset from the

baseline. (The Italic Angle metric has one field only.) The right

number field is the size of the alignment zone and starts at the

offset of the metric. Nodes and anchors placed in alignment

zones are highlighted. See section 4.2.5, ‘Nodes in Alignment

Zones’ (p. 25) and section 4.4.1, ‘Adding, Editing, and Removing

Anchors’ (p. 35).

Alignment zones are used by the automatic hinting process,

which ensures that overshoots snap to even metric lines at small

font sizes or low screen resolutions. See section 11.1.2, ‘Alignment

Zones’ (p. 157) for details on PostScript hinting with alignment

zones. For TrueType hinting, separate zones may be configured

(see section 12.2.1, ‘TrueType Zones’, p. 165).

8.2.5 Stems

Font designs typically conform to standard stems. For example,

the capital I has a vertical stem, and the capital H has two

vertical stems and one horizontal stem. A rounded shape like the

letter O has left and right vertical stems and top and bottom

horizontal stems. Serifs and crossbars, such as in the lowercase f

and t, are also stems.

Frequently used stem widths are defined in File → Font Info… →
Masters → Stems. The autohinter uses these stem values to add

hints to vertical and horizontal stems. See section 11.2,

‘Autohinting’ (p. 159) for details on hinting with the autohinter.

For TrueType hinting, separate stems may be configured (see

section 12.2.2, ‘TrueType Stems’, p. 168).

Click the plus button located to the right of the Stems

heading to add a new stem definition. A stem can either be

Font Info Glyphs 3 Handbook, October 2021 109

vertical (measured left to right) or horizontal (measured top

to bottom). The name of a stem is used to describe it and for

interpolation: When interpolating between masters, stems with

the same name in both masters are used to interpolate the

in-between stem value. The stem value should be as close to as

many master stems as possible. See chapter 11, ‘PostScript

Hinting’ (p. 155) for more information on good stem values.

Click the actions button located on the right of a stem entry

line to restrict it to a specific subset of glyphs. This scoping works

the same as in master metrics (see p. 108) or smart filters. See

section 7.5.4, ‘Smart Filters’ (p. 92) for details on glyph scopes.

8.2.6 Custom Parameters

Masters can have custom parameters just like the Font tab (see

section 8.1.13, ‘Custom Parameters’, p. 106). A custom parameter

value is interpolated if it is defined in all masters. Some custom

parameters exist on the font and the master level. A parameter

on a master will overwrite such a font parameter. Instances can

also have custom parameters, which overwrite both font and

master parameters.

8.2.7 Number Values

Tokens can use Number Values in OpenType feature code to

insert numbers that interpolate between masters. Click the

plus button located to the right of the Number Values heading

to add a new number value. See section 8.4.4, ‘Number Value

Tokens’ (p. 117) for more information.

8.3 EXPORTS

The Exports tab contains the static instances and variable fonts

that are created when exporting with File → Export… (Cmd-E).

Click the plus button located in the bottom left of the Exports

tab to add a new static or variable instance. Four options are

available:

Add Instance adds a new instance named ‘Regular’.

Add Instance for Each Master adds instances at the design space

locations of each master. For example, if the font has two

masters, Thin with a weight of 100 and Bold with a weight of 700,

a Thin and a Bold instance will be added with the same axis

values as the respective masters.

Font Info Glyphs 3 Handbook, October 2021 110

Instance as Master adds a new master to the Masters tab using

the outlines and metrics of the currently selected instance. For

example, consider a font with two masters—Thin and Bold—and

five instances—Thin, Light, Regular, Semibold, and Bold—where

the Light, Regular, and Semibold instances are interpolations

between the two masters. Select the Regular instance and choose

Instance as Master to add a Regular master with the outlines and

metrics taken from the instance. Now the Light instance

interpolates between the Thin and Regular masters, the Regular

instance uses the Regular master without interpolation, and the

Semibold instance interpolates between the Regular and

Bold masters.

Add Variable Font Setting adds a variable font instance. See

section 15.1.2, ‘Variable Fonts Export’ (p. 216) for more

information.

Click the minus button to delete the selected instances.

Select multiple instances by Command-clicking entries in the

sidebar or Shift-click to select a range of instances. Reorder

instances by dragging them to a new position. The order of

instances is just used for organization within Glyphs and does not

affect the exported font files. For more information on

interpolating instances, see chapter 13, ‘Interpolation’ (p. 184).

8.3.1 Active

The Active setting controls whether an instance is exported with

File → Export… (Cmd-E). Deactivated instances are shown with a

gray icon in the sidebar.

8.3.2 Style Name

The style name appears in the font menu of an application.

Examples include ‘Regular’, ‘Bold’, or ‘Light Italic Display’. The

style name can include the letters A–Z and a–z, the digits 0–9,

spaces, and some punctuation marks such as the hyphen.

Characters outside the ASCII range are not compatible with all

software. Instead, add the ‘Localized Style Names’ custom

parameter for style names with Unicode characters.

Some operating systems, applications, and printers do not

work with fonts with long font names. A conservative limit is 20

characters for the overall name (family and style name). When

the font name is too long, consider adding the ‘Font Name’ and

‘Full Name’ custom parameters with abbreviated font names.

Font Info Glyphs 3 Handbook, October 2021 111

See the Naming tutorial³ for more information on good style

names and how to shorten them for maximum software

compatibility.

8.3.3 Weight &Width

The Weight Class and Width Class values are used to categorize

an instance. Some applications use the weight and width classes

to order fonts in a font menu. When defining the typography of a

website with CSS, the weight class is used to access fonts of

different weights.

Click the disclosure ! button to select from a range of

predefined values. These values follow the OpenType OS/2

specification⁴: 100, 200, …, 900 for standard weight classes and

1–9 for width classes. The weight class can be any value from 1 to

1000 if a font family needs more than the nine standard weight

classes. Click a weight class field to manually enter a value

ranging from 1 to 1000 (for example, 350 for a Semi Light style).

Note that some applications only work with fonts that use one of

the predefined weight classes and reject fonts with

in-between values.

Weight and width classes are not necessarily the same as the

weight and width axis coordinates (if a font has such axes). The

weight and width classes are used by applications other than

Glyphs to order and categorize fonts. Axes are used internally in

Glyphs for interpolation (though they can also be exposed, see

section 13.3.1, ‘Axes Coordinates’, p. 187). Weight and width axes

are not bound to the same value ranges as the weight and

width classes.

8.3.4 Axes Coordinates

Axes coordinates define the location of an instance in the

design space. The axes of a font are defined in the Font tab (see

section 8.1.12, ‘Axes’, p. 106), and masters define the outlines and

metrics at specific locations in the design space of those axes (see

section 8.2.3, ‘Axes Coordinates’, p. 107).

An instance with axis coordinates between masters is

interpolated and extrapolated when it is outside the design space.

For example, consider a single weight axis with two masters,

Light at 40 and Bold at 120. An instance with a weight of 80 is

3 glyphsapp.com/learn/naming

4 docs.microsoft.com/typography/opentype/spec/os2

Font Info Glyphs 3 Handbook, October 2021 112

https://glyphsapp.com/learn/naming
https://docs.microsoft.com/typography/opentype/spec/os2
https://docs.microsoft.com/typography/opentype/spec/os2
https://glyphsapp.com/learn/naming
https://docs.microsoft.com/typography/opentype/spec/os2

interpolated. Instances with weights of 20 and 150 are both

extrapolated. Extrapolated instances are often challenging to get

right. Consider drawing masters at the axes extremes so that all

instances are interpolated.

8.3.5 Style Linking

Use style linking to connect a bold, italic, or bold-italic instance

to its regular instance. Style linking is used by applications like

word processors to switch to the correct font when the user clicks

the Bold button or presses Cmd-I to italicize the selected text.

Style Linking has two checkboxes—one for bold and one for

italic—and a text field for the name of the base instance. For

example, in a Bold Italic instance, select both checkboxes and

enter the name of the normal instance (‘Regular’) into the

text field.

Style linking only works between fonts with the same family

name. By default, Glyphs uses the family name from the Font tab

for all instances in the Exports tab. The family name can be

overwritten for individual instances by adding a ‘Localized Family

Names’ in File → Font Info… → Exports → General. Fonts

generated from different Glyphs files can use the same family

name. This is common when using separate Glyphs files for the

Roman and the Italic, which still belong to the same family.

Some applications do not expose a complete list of all styles in

a font. Instead, they only allow the user to select a family and its

regular, bold, italic, and bold-italic styles using Bold and Italic

buttons. In these applications, fonts that are not linked typically

appear as separate entries in a font family picker. Consider using

the following style linking strategy:

The Bold, Italic, and Bold Italic instances of a font family should

always be linked to the Regular instance.

Other italic styles should always be linked to their non-italic

counterpart. For example, Medium Italic is marked as the

italic of Medium.

Some font designers also link bolds with other styles. For

example, Semibold is marked as the bold of Light. This hides the

Semibold style from the font family picker, making it only

available when pressing the Bold button while the Light style is

selected. Therefore, users may be unaware that the font family

includes a Semibold style.

Font Info Glyphs 3 Handbook, October 2021 113

8.3.6 Custom Parameters

Instances can have custom parameters. Some custom parameters

exist in the Font, Masters, and Exports tabs. A parameter in the

Exports tab will overwrite values set in the Masters and Font tabs.

For example, a trial version of an instance might add the word

‘TRIAL’ to the end of the family name.

8.4 FEATURES

The Features tab manages OpenType feature code that

substitutes and positions glyphs. These features are described in

the OpenType specification for the GSUB table⁵ (glyph

substitution) and the GPOS table⁶ (glyph positioning).

Some GPOS features such as kerning, mark positioning, and

cursive attachment are primarily defined in Edit View by editing

the kerning values between glyphs and placing anchors. These

implicit features do not appear in the Feature tab. See

section 8.4.7, ‘Implicit Features’ (p. 121) for details.

8.4.1 OpenType Feature Code

OpenType features are defined using the AFDKO (Adobe Font

Development Kit for OpenType) syntax. Glyphs offers additional

feature code functionality; see section 8.4.4, ‘Tokens’ (p. 117) and

section 8.4.5, ‘Conditional Feature Code’ (p. 120) for details.

The Features sidebar is divided into three parts: Prefix,

Classes, and Features. Click the plus button located to the

right of each heading to add an entry. Select one or multiple

sidebar entries and delete them by clicking the minus button

located in the bottom left of the window.

Prefix entries contain arbitrary feature code primarily used to

define lookups that need to be placed outside any

specific feature.

Classes are lists of glyph names. The names are separated by a

white space character, either a space or a line break.

Features control the glyph substitution and positioning rules. A

feature is identified by its four-character tag. Click the plus

button next to the Feature heading and search by feature tag or

feature name. Double-click a feature to add it or navigate the

picker list with Up and Down arrow keys and press Return when

5 docs.microsoft.com/typography/opentype/spec/gsub

6 docs.microsoft.com/typography/opentype/spec/gpos

Font Info Glyphs 3 Handbook, October 2021 114

https://docs.microsoft.com/typography/opentype/spec/gsub
https://docs.microsoft.com/typography/opentype/spec/gpos
https://docs.microsoft.com/typography/opentype/spec/gsub
https://docs.microsoft.com/typography/opentype/spec/gpos

the desired feature is selected.

A Spec button is shown in the top right of the window when a

feature is selected. Click it to open the feature specification on

the Microsoft OpenType developer website.

8.4.2 Automatic Feature Code

Glyphs can automatically generate feature code for many

commonly used OpenType features. Click the Update button

located in the bottom left of the window to create and update

automatically generated prefixes, classes, and features all at once.

Glyphs also looks for new classes and features to generate

when updating. For example, suppose glyphs with an underscore

in their name (such as f_l) were added since the last update. In

that case, Glyphs spots those additions and automatically adds a

‘liga’ (Standard Ligatures) feature with the corresponding feature

code to the sidebar.

Many automatic features use the dot suffix in glyph names.

For example, glyphs ending in ‘.sc’ are put in the small caps

feature (sub a by a.sc), or glyphs ending in ‘.tf’ are put into the

tabular figures feature (sub zero by zero.tf). This also works

by appending the feature tag to the end of a glyph name. For

example, the glyph g.ss01 would substitute the glyph g when the

first stylistic set (‘ss01’) is enabled.

Automatic prefixes, classes, and features are indicated with an

update button to the right of their name. Click this button to

update only that single entry. Select an entry from the sidebar

and deselect the Generate Feature Automatically checkbox above

the code editor to edit the code manually. Manual code is not

updated by clicking the Update button. See section 8.4.3,

‘Manual Feature Code’ (p. 116) for details.

Some features and classes are not added automatically when

pressing Update, even though Glyphs could auto-generate them.

For example, the class All, which contains every exporting glyph,

can be automatically generated, but not every font project needs

it. The Capital Spacing feature (‘cpsp’), which adds a bit of extra

space between capital letters, can also be automatically

generated but is not required by all designs, and some designers

might want to write it manually.

Some features automatically generated by Glyphs do not

appear in the Features tab. See section 8.4.7, ‘Implicit Features’

(p. 121) for details.

Font Info Glyphs 3 Handbook, October 2021 115

8.4.3 Manual Feature Code

Uncheck the Generate Feature Automatically checkbox located

above the feature code text field to write the code manually.

Code that cannot be generated automatically, such as the ‘calt’

feature, is always in manual mode.

Feature code is written in the AFDKO syntax as specified by

the OpenType Feature File Specification.⁷ After editing feature

code, click the Compile button located in the bottom left of the

window to preview it in Edit View. See section 4.13.3, ‘Previewing

OpenType Features’ (p. 55) for details. Note that Edit View only

previews manual substitution code, not manual positioning code.

Glyphs syntax highlights the feature code in the editor:

Keywords (like sub or lookup) are formatted differently from

glyph names (like ka-deva or zero) which are again formatted

differently from numeric values, lookup names, and comments.

Trigger the autocomplete function by typing a glyph name, a

class name, or a lookup name (for example, a glyph name after

the keyword sub or a lookup name after the keyword lookup).

Glyphs will provide a menu of matching suggestions.

Navigate to the desired suggestion with the Up and Down arrow

keys. If there are many matching suggestions, scroll until the

desired suggestion is shown or narrow down the suggestions list

by typing a few more characters. Accept the highlighted

suggestion by pressing the Return key.

Option-click a glyph or class name to show a visual preview.

For glyph classes, a list of all member glyphs is shown.

Glyphs shows error messages inline if the feature code is

incorrect and cannot be compiled. Click the error icon for an

expanded description. Errors with a wrench icon include a

suggested fix. Click the Fix button to accept the suggestion.

7 adobe-type-tools.github.io/afdko/OpenTypeFeatureFileSpecification.html

Font Info Glyphs 3 Handbook, October 2021 116

https://adobe-type-tools.github.io/afdko/OpenTypeFeatureFileSpecification.html
https://adobe-type-tools.github.io/afdko/OpenTypeFeatureFileSpecification.html

Prefixes, classes, and features with errors show an icon in the

sidebar. Click the error icon in the sidebar to jump directly to the

erroneous part of the code.

The text field below the feature code can be used to write notes

about a prefix, class, or feature. Change the height of the notes

field by dragging the gray line above it up and down.

Click the snippets button to insert predefined code

snippets. Choose any of the snippets to insert them into the

feature code. See section 17.2, ‘Custom Feature Code Snippets’

(p. 233) for details on adding custom feature code snippets.

8.4.4 Tokens

Tokens are pieces of code that help automate the feature code.

They dynamically insert values and glyph names into feature code,

and their syntax starts with a dollar sign ($). There are three types

of tokens: number values, glyph properties, and glyph predicates.

Number Value Tokens

A number value token inserts the values defined in File → Font
Info… →Masters → Number Values (see p. 110). Number value

Font Info Glyphs 3 Handbook, October 2021 117

tokens are written with a dollar sign followed by the number

value name.

For example, the token $padding inserts the ‘padding’ number

value on the master of the font. The value inserted by the token is

interpolated if multiple masters exist.

Tokens also support basic arithmetic. Wrap the name of the

number value in curly braces to use plus +, minus -, times *, and

divide / operators: ${padding*2}. The name of the number

value must be placed at the start of the arithmetic expression.

Such operations can be helpful in, for example, the capital

spacing ‘cpsp’ feature:

pos @Uppercase <$padding 0 ${padding*2} 0>;

Hold down the Option key and click a number value token to

show its computed value.

Glyph Property Tokens

A glyph property token is written as ${glyphname:property}

where glyphname is the name of a glyph and property is a

dot-separated property path.

Properties can be metrics (width, LSB, RSB, TSB, BSB) and

anchor positions (such as anchors.top.x). Basic arithmetic is

supported as in number value tokens (see p. 117). For example:

glyph positioning such as in the 'cpsp' feature

pos a.alt <${period:LSB} 0 ${period:LSB*2} 0>;

custom mark to base positioning

pos base b <anchor

${b:anchors.top_special.x}

${b:anchors.top_special.y}> mark @SpecialTopMark;

Option-click a glyph property token to show its value.

Glyph Predicate Tokens

Glyph predicate tokens insert a space-separated list of glyph

names. The predicate determines the glyphs matched and

inserted. For example, $[script == "adlam"] expands to a list

of all glyphs belonging to the Adlam script, and

$[name endswith ".star"] expands to a list of all glyphs

ending with a ‘.star’ suffix.

When used in a feature class, predicate tokens can be written

among other glyph names, like this:

Font Info Glyphs 3 Handbook, October 2021 118

period comma $[category == "Symbol"]

would expand to:

period comma at ampersand plus minus ...

Within prefixes and features, the predicate needs to be wrapped

in square brackets, like this:

@Signs = [period comma $[category == "Symbol"]];

@SmallCaps = [$[case == smallCaps]];

The predicate can check for different aspects of a glyph:

True/False Check whether a boolean true or false condition

applies. For example, $[isAligned == true],

$[hasHints == false], or $[isColorGlyph == true].

Numbers Check for numeric values of the glyph. For example,

$[countOfLayers == 3] or $[countOfUnicodes > 0].

Numbers are also used for glyph properties with a limited set

of values. For example, $[colorIndex == 5] (see

section 7.3.5, ‘Color Label’, p. 83 for color numbers),

$[case == upper] (use ‘noCase’, ‘upper’, ‘lower’, ‘smallCaps’,

‘minor’, or ‘other’ for comparison), or $[direction == 2]

(0: LTR, 1: BiDi, 2: RTL).

Strings Match a text string with a glyph property. For example,

$[name endswith ".sc"], $[script == "balinese"], or

$[category == "Letter"].

Objects Access nested glyph data for comparison. For example,

$[layer.anchors.top.y > 600], $[layer.maxX > 300], or

$["ipa" in tags].

Predicates can also be combined. Write AND between two

predicates if both need to be true. Write OR if only one of the two

needs to be true for the glyph to be included. Write NOT before a

predicate to invert it; that is, include all glyphs not matching the

predicate. If needed, use parentheses to group predicates.

For example:

$[script == "greek" AND case == upper]

$["todo" in tags OR NOT note contains "done"]

$["ipa" in tags OR ("lang" in tags AND case == lower)]

Glyph predicate tokens also support a special class(...)

function that represents all glyphs contained in a feature class

Font Info Glyphs 3 Handbook, October 2021 119

(@SomeClass). Use it to check whether a glyph is in a given class,

like this:

all lowercase glyphs of the class @SomeClass

$[name in class(SomeClass) AND case == lower]

the intersection of two classes

$[name in class(Narrow) AND name in class(TopMark)]

Option-click a glyph predicate token to show a list of all

matching glyphs.

8.4.5 Conditional Feature Code

Feature code can be wrapped in #ifdef blocks to limit it to

variable fonts. Such a code block ends with a #endif line:

#ifdef VARIABLE

sub a by a.var;

#endif

Rules inside a #ifdef (if defined) block are included only in

variable fonts. Use #ifndef (if not defined) to include feature

rules only in non-variable fonts:

#ifndef VARIABLE

sub a by a.static;

#endif

Variable-only blocks may contain OpenType feature variations.

These restrict substitution and positioning rules to a specific

region of the design space. Define a feature variation by writing

the condition keyword followed by the axis ranges to which the

code following the condition should be limited:

#ifdef VARIABLE

condition 600 < wght < 900;

sub dollar by dollar.alt;

#endif

Axis ranges are written as the axis tag bounded by a lower and

upper limit. Write a less-than sign (<) between the limit value and

the axis tag. Note that, although the less-than sign is written for

both the lower and upper limit, the lower limit actually behaves as

if a less-than-or-equal sign (≤) was used. An axis range can

specify both a lower and upper limit or only one of the two.

Font Info Glyphs 3 Handbook, October 2021 120

A condition can be restricted to multiple axis ranges. Separate

them with a comma. The code following the condition is used

only if all specified axis ranges match.

#ifdef VARIABLE

condition 600 < wght < 900, 70 < wdth < 90;

sub won by won.boldcondensed;

#endif

8.4.6 Naming Stylistic Sets

Stylistic sets—the features with tags ‘ss01’ through ‘ss20’—can be

given proper names. Applications supporting feature names will

show those names instead of ‘Stylistic Set 1’, …, ‘Stylistic Set 20’.

When a stylistic set is selected in the sidebar, rows for the

feature name are shown above the code editor. Each row has a

language picker and a text field for a localized name in that

language. Click the plus button located to the right of a row to

add additional localizations of a feature name. Click the minus

button to remove a row.

Use the Default language to provide a fallback name if none of

the other localized names match the user’s locale. Many systems

assume the default language to be English. For example, to

provide the name of the ‘ss07’ feature in English and German,

use the Default language for the English feature name and the

German language for the German name.

8.4.7 Implicit Features

Implicit features are automatically generated by Glyphs but do

not appear in the Features tab. The kerning feature (‘kern’) is such

an example. Kerning values are defined in Edit View and

managed by the Kerning window (see section 10.2, ‘Kerning’,

p. 148). The ‘kern’ feature code is different for each master and

instance, which is why it is not exposed in the Features tab and

instead added silently in the background on export. The same is

true for other features that are added implicitly:

Distance ‘dist’ works similarly to kerning, but, unlike kerning, it is

not controllable by the user.

Mark to base ‘mark’ is generated if base glyphs have base

anchors such as ‘top’ or ‘bottom’ and mark glyphs have

matching mark anchors such as ‘_top’ or ‘_bottom’. This also

applies to the ‘abvm’ (above-base mark positioning) and

Font Info Glyphs 3 Handbook, October 2021 121

‘blwm’ (below-base mark positioning) features. See

section 4.4.2, ‘Mark to Base Positioning’ (p. 36) for details.

Mark to mark ‘mkmk’ is generated similarly to the ‘mark’ feature.

See section 4.4.3, ‘Mark to Mark Positioning’ (p. 36).

Cursive positioning ‘curs’ is also defined in Edit View by placing

special ‘exit’ and ‘entry’ anchors. See section 4.4.4, ‘Cursive

Attachment’ (p. 36).

Implicit features can also be extended manually. Click the plus

button next to the Features heading in the sidebar and search for

a feature tag, for example, ‘kern’. Double-click the result or press

Return to insert the feature.

In the feature code editor, insert the line # Automatic Code

somewhere in the feature code. Any code above this line will be

placed before the automatically generated feature code, and any

code below it will be placed after the automatic feature code:

pos a b -20;

Automatic Code

pos x y 15;

pos y z -5;

Insert the automatic code placeholder by clicking the

snippets button located in the bottom right of the window.

8.4.8 Export-Specific Features

Use the following custom parameters to customize the features

for individual instances.

‘Add Prefix’, ‘Remove Prefixes’, and ‘Replace Prefix’

‘Add Class’, ‘Remove Classes’, and ‘Replace Class’

‘Add Feature’, ‘Remove Features’, and ‘Replace Feature’

Automatic classes and features do not need to be changed for

different instances; they are adapted automatically for

each instance.

8.5 OTHER SETTINGS

8.5.1 Grid Spacing & Subdivision

The points defining the outlines are placed on a grid, and the

Grid Spacing defines how the coordinates of the points are

Font Info Glyphs 3 Handbook, October 2021 122

rounded. The default value of a grid spacing of 1 rounds points to

font units. For example, (3.142, 7.816) is rounded to (3, 7). A value

of 5 rounds points to the nearest factor of 5; consequently

(3.142, 7.816) is now rounded to (5, 10). Finally, a value of 0 does

not round points and maintains (3.142, 7.816) as it is.Contrary to popular belief,

decimal coordinates can be

exported into CFF-flavor

(PostScript) fonts.

Disabling

rounding can be helpful for highly detailed designs such as

ornaments or when glyphs are scaled to a new size. Higher values

are useful in coarse designs such as pixel fonts.

All tools and modifications snap to the grid. Choose Path →
Round Coordinates to round all selected points to the grid.

Use a Subdivision value above 1 to offer finer control while

keeping a large grid spacing for the design coordinates. For

example, a Grid Spacing of 100 and a Subdivision of 5 places

points on a 20 unit subgrid. A default Grid Spacing of 1 with a

Subdivision of 10 gives point coordinates one decimal point, such

as (3.1, 7.8).

8.5.2 Keyboard Increments

Many places in Glyphs allow modifying values with the arrow

keys. For example, points can be moved in Edit View, or numeric

values in text fields can be incremented and decremented using

the Up and Down arrow keys. Values are modified by 10 units

when holding down the Shift key and by 100 units when holding

down the Command key. Adjust the Shift and Command values

as desired.

8.5.3 Use Custom Naming

Select the Use Custom Naming option to use custom glyph

names that do not conform to the names from the built-in glyph

database. Enable this option for workflows using custom glyph

names, thus preventing the automatic replacement of names.

Deactivating the Use Custom Naming option will not

immediately rename the glyphs of the font. Instead, choose

Glyph → Update Glyph Info to update the properties, including

the glyph name, of all selected glyphs. Note that it may invalidate

imported or manually written feature code, which will require

manual code adjustments.

When importing OpenType fonts or UFO sources, glyph

names are either kept or modified to conform with the built-in

glyph database. Go to Preferences → User Settings to change the

setting of the option Keep Glyph Names from Imported Files (see

Font Info Glyphs 3 Handbook, October 2021 123

section 3.3, ‘User Settings’, p. 15).

8.5.4 Disable Automatic Alignment

This option disables the automatic alignment of components and

the automatic synchronization of metrics for composite glyphs

such as diacritics. Lock the position of individual components by

choosing Lock Component from the context menu in Edit View.

Go to Glyphs → Preferences… → User Settings → Disable
Automatic Alignment for Imported Files for the setting of

imported files (see section 3.3, ‘User Settings’, p. 15). See also

section 9.1.8, ‘Automatic Alignment’ (p. 130).

8.5.5 Keep Alternates Next to Base Glyph

Select Keep Alternates Next to Base Glyphs to sort glyph variants

with a dot suffix name directly after the base glyph without the

dot suffix. For example, a.ss15, a.alt, and a.loclDEU will follow

the a glyph instead of being placed after all base

lowercase letters.

8.5.6 File Format Version

The format of a Glyphs file changed slightly from Glyphs 2 to

Glyphs 3. For compatibility, Glyphs 3 can read and write the old

Glyphs 2 file format.

When working on a Glyphs file created in Glyphs 2, Glyphs 3

will import it as a version 2 file. Some of the features new in

Glyphs 3 cannot be stored in version 2 format files. Use all

Glyphs features by changing this setting to Version 3. New

Glyphs files are always created in version 3 format.

8.6 NOTES

The Notes tab in Font View stores a text note. It is not exported

and is used only for working in Glyphs. The font note

corresponds to the ‘note’ custom parameter of the font.

The text field uses syntax highlighting for Markdown. Italic

(*italic*, _italic_), bold (**bold**, __bold__), hyperlinks ([Link

Text](https://example.org) & <https://example.org>), and heading

(#, ##, ###, ####, #####, ######) formatting are supported.

Font Info Glyphs 3 Handbook, October 2021 124

Font Info Glyphs 3 Handbook, October 2021 125

9 Reusing Shapes

9.1 COMPONENTS

Components are glyphs that are being used inside other glyphs.

They allow shapes to be replicated across a font. For example,

the A glyph can be reused to build the Ä, À, Â, Ã, Å, and many

more glyphs. Diacritics like ◌̈, ◌̀, ◌̂, ◌̃, and ◌̊ can also be used as

components so that other characters like Ö, È, Ĉ, Ñ, Ů, and many

more can be formed.

The original glyph from which a component is derived is

referred to as the base glyph of the component. A glyph that is

built out of components is referred to as a compound or

composite glyph. Changing a base glyph also changes all of its

copies as a component. When changing a base glyph in

Edit View, all related components will update live to reflect the

newly made changes.

On export, components are decomposed to paths for CFF and

TrueType flavor fonts with the Remove Overlaps option selected.

TrueType flavor fonts without Remove Overlaps (such as variable

fonts) keep non-overlapping components while decomposing

overlapping components. Set the ‘Keep Overlapping

Components’ custom parameter on an instance to also keep

overlapping components in TrueType flavor fonts.

9.1.1 Building Composites

When adding a new composite glyph, Glyphs will automatically

add the necessary components. For example, adding an eacute

(é) glyph to a font will automatically build it with an e component

and an acutecomb (◌́) component. Glyphs uses the glyph info

database (see p. 96) to figure out which components to insert

into which glyphs. This automatic insertion does not work if any

of the required components do not exist in the font.

Convert an existing glyph to a composite by choosing Glyph →
Create Composite (Cmd-Ctrl-C). This command will replace all

paths and components already present on the current layer. Hold

down the Option key to apply the command to all masters of the

glyph (Cmd-Ctrl-Opt-C).

Add components by name by choosing Glyph → Add
Component (Cmd-Shift-C). Hold down Option to add the

component on all masters (Cmd-Opt-Shift-C). The component

Glyphs 3 Handbook, October 2021 126

picker works the same as the glyph picker used to insert glyphs in

Edit View. See section 4.9.3, ‘Text Tool’ (p. 46) for details.

9.1.2 Turning Paths into Components

Create a new component by selecting paths and components

on a glyph layer and choosing Component from Selection from

the context menu or the Glyph menu. A dialog window appears,

prompting for the glyph name of the new component. Glyphs

will suggest a component name based on context, but the name

can be changed to any other name as well. Prefix the name of a

component with an underscore (_) if the component should only

be used inside the Glyphs file and not be part of the exported

glyphs. See also the exports glyph property (see p. 110).

Confirm the dialog with OK. Glyphs adds the newly created

component to the current Edit View tab and activates it. The

previously selected shapes will be replaced by the component.

9.1.3 Recipes

When adding glyphs to a font using Glyph → Add Glyphs…,

recipes can be used to define which components should be used

in which glyphs. A recipe is a formula of glyph names that is used

to create a new glyph. The following recipe formulas can be used:

component = glyph , for example, ‘Eth=Dtail’, which adds the

Dtail glyph with the Eth as a single component.

base + mark = glyph , for example, ‘x+acutecomb=xacute’,

which adds multiple components (separated by a plus sign) to a

new glyph. The mark glyphs are automatically aligned to the base

glyph using anchors.

base + base = glyph , for example, ‘d+ezh.connect=dezh’.

Adding multiple base components to a glyph can be useful when

building ligatures.

Reusing Shapes Glyphs 3 Handbook, October 2021 127

9.1.4 Editing Components

Click to select a component. When dragging with the Select

tool, components are ignored unless the Option key is held

down. Press the Tab key to select the next component or

Shift-Tab to select the previous one. When paths are present on a

layer, the first Edit → Select All (Cmd-A) selects paths only. Press

Cmd-A once again to also select all components on the layer.

With one or multiple components selected, a component

Info box appears next to the glyph Info box. See section 4.10.1,

‘Info box’ (p. 47) for details on the component Info box.

Transform components using the Info box, the bounding box

(see p. 26), or the Palette (see p. 62). Flipping a component

vertically switches its ‘top’ and ‘bottom’ anchors to be again on

top and bottom of the component. This anchor switch is helpful,

for example, when building the gcommaaccent (ģ) from a g and a

flipped commaaccentcomb (◌̦).

Move a selected component with the mouse or the arrow keys.

Auto-aligned components can either be moved along the vertical

axis or not at all. See section 9.1.8, ‘Automatic Alignment’ (p. 130)

for details. When moving with the arrow keys, hold down Shift

for increments of 10 and Command for increments of 100.

Option-drag a component to duplicate it. Delete all selected

components by pressing the Delete key.

9.1.5 Moving between Base Glyphs and Composites

Double-click a component to edit its glyph. The component

glyph will be placed next to the composite glyph in Edit View and

activated for immediate editing. Alternatively, click the arrow

button located in the top-left of the component Info box to edit

its glyph. (For the Info box to be shown, the component must be

selected and View → Show Info must be checked.)

Show all glyphs that use the current glyph as a component by

Control-clicking or right-clicking the canvas and choose Show all

glyphs that use this glyph as a component from the context menu.

Reusing Shapes Glyphs 3 Handbook, October 2021 128

9.1.6 Component Placeholders

Component placeholders indicate a problem with a component.

There are three types of problems.

An empty base glyph placeholder is shown if the glyph layer of a

component is empty. Remove the component or fill the

glyph layer.

When no base glyph is shown, the component references a

glyph that does not exist (or no longer exists). Remove the

component or add the referenced glyph to the font. Click the

placeholder to see the referenced glyph name in the Info box

(Cmd-Shift-I).

A bad reference indicates a circular reference, where the

component contains a composite glyph that contains that

component.

9.1.7 Anchors

Glyphs uses anchors for OpenType features (such as

mark-to-base positioning and cursive attachment, see section 4.4,

‘Anchors’, p. 34) and for arranging components. In many cases,

the same anchors can be used for both features and for arranging

components.

Unicode defines base characters like S (U+0053), and

combining marks like ◌̌ (U+030C). Typing a base character

followed by a combining mark will place the mark on the base

glyph using the anchors. But Unicode also contains precomposed

characters like Š (U+0160). Glyphs for these characters can be

built by using the base and mark glyphs as components.

For example, a mark component with a ‘_top’ anchor snaps

onto the ‘top’ anchor of a base component just like mark-to-base

positioning would place a mark glyph atop a base glyph. See

section 4.4.1, ‘Adding, Editing, and Removing Anchors’ (p. 35) for

general information on working with anchors.

In some situations, a component might need multiple anchors

of the same type. For example, it is common to use such

alternative ‘top’ anchors for Vietnamese diacritics. Alternative

anchors share the name of the original anchor but use an

underscore suffix for differentiation. So, there might be a ‘top’

Reusing Shapes Glyphs 3 Handbook, October 2021 129

and a ‘top_alt’ or ‘top_viet’ anchor on the same glyph layer. The

suffix after the underscore can be chosen freely.

Switch between anchors by selecting an attached component

and pick a different anchor from the menu in the component

Info box. Show the Info box with View → Show Info (Cmd-Shift-I).

The anchor icon is only visible if multiple anchors are available.

9.1.8 Automatic Alignment

Glyphs built entirely from components are called composite or

compound glyphs and can use automatic alignment to keep their

metrics in sync with their base glyph. For example, changing the

left sidebearing of the U glyph would automatically adjust the

glyphs Ú, Ù, Ŭ, Ü, Ū, and all other composite glyphs built with the

U component.

Automatic alignment is enabled by default if a glyph layer

contains only component shapes (no path shapes). Control-click

or right-click an auto-aligned component and choose Disable

Automatic Alignment from the context menu to place the

components manually. Choose Enable Automatic Alignment

from the context menu on a component to enable it again.

Automatic alignment can also be disabled for the entire font in

File → Font Info… → Other → Disable Automatic Alignment. See

also section 8.5.4, ‘Disable Automatic Alignment’ (p. 124).

Auto-aligned components are shown in green to differentiate

them from normal, gray components. If a component has the

category Number (for example, the glyphs zero–nine) and it is the

only component in a composite glyph, it is shown in blue and can

be shifted vertically while staying auto-aligned horizontally.

Metrics keys cannot be used for auto-aligned composite

glyphs since the sidebearings are derived from the base

components. There is one exception: auto-aligned composite

glyphs can add to and remove from the automatic sidebearing

values using the =+ and =- operators. For more information, see

section 10.1.4, ‘Metrics Keys and Automatic Alignment’ (p. 148).

Automatic alignment is typically for single components, a base

Reusing Shapes Glyphs 3 Handbook, October 2021 130

component with one or more mark components, or multiple base

components. These three setups are described in more detail in

the following sections.

Single Component

A composite glyph may use a single auto-aligned component.

This setup is helpful for glyphs that look the same but should still

be encoded as two separate glyphs. That might be the case with

Greek, Latin, and Cyrillic capital letters sharing the same outlines,

such as Alpha/A/A-cy, Beta/B/Ve-cy, and Rho/P/Er-cy. These

glyphs belong to different scripts and may use separate kerning

groups, so they should be encoded as separate glyphs instead of

a single glyph with multiple Unicode values.

A single component might also be handy when constructing

the glyph nine as a flipped six. As mentioned above, such a

component will be shown in blue and can be shifted vertically

while keeping the automatic horizontal alignment.

Punctuation marks such as ‹ and ›, ¿ and ?, { and }, and arrows

such as ← and → can also often be built from a single flipped

component.

Base Component &Mark Components

Build precomposed glyphs such as Ú, Ù, Ŭ, Ü, Ū from a base

component (U in this case) and diacritical marks. First, add the

base component, followed by combining mark components. For

example, for Uacute (Ú), add the U component and then the

acutecomb (◌́) component. If the glyph is known to the glyph

info database—as is the case with Uacute—choose Glyph → Create
Composite (Cmd-Ctrl-C), and all required components will be

added in the correct order.

Use anchors to place marks atop, below, or over the base

component. See section 9.1.7, ‘Anchors’ (p. 129) for details. When

adding multiple combining marks to a composite glyph, marks

stack in the order in which they are added. For this to work, mark

glyphs need to contain both a base attachment anchor (such as

‘_top’) and a mark attachment anchor (such as ‘top’). Rearrange

marks using the Shape Order filter (see section 6.2.1, ‘Shape

Order’, p. 68).

Mark components positioned with anchors do not affect the

sidebearings of the composite glyph. For example, placing a

Reusing Shapes Glyphs 3 Handbook, October 2021 131

macroncomb (◌̄) atop an idotless (ı) may result in the macron

reaching outside the glyph box of the imacron (ī). In such a case,

either design a narrower macron and use that for the imacron or

add additional space to the sidebearings of the composite glyph

(see section 10.1.4, ‘Metrics Keys and Automatic

Alignment’, p. 148).

See the Diacritics tutorial¹ for a guided introduction to

working with diacritics.

Multiple Base Components

A composite glyph may also contain multiple base components.

They are placed next to each other as if they were typed together.

Combining marks can be placed on each one of the base

components individually; place a base component first, then all of

its marks, then the next base component followed by its marks.

Adding multiple base components to a composite glyph is

handy when building ligature glyphs. Using components for

ligatures is particularly helpful for scripts like Arabic that make

extensive use of ligatures.

Base components can be connected using the same anchors

that are used for cursive attachment (see p. 36). This technique

can build an n glyph from a _part.stem and a _part.arch

component, where the _part.stem has an ‘#exit’ anchor and

_part.arch has an ‘#entry’ anchor. Add both components to the n

glyph, and they will connect such that the exit and entry anchors

overlap. Add an ‘#exit’ anchor to the _part.arch to build an m

composite glyph from a _part.stem and two _part.arch

components. See section 9.1.14, ‘Underscore Components’

(p. 134) for details on working with components with a name

beginning with an underscore.

9.1.9 Locking Components

Lock components that are not automatically aligned by

Control-clicking or right-clicking it and choosing Lock

Component from the context menu. Locked components cannot

be moved. Unlock a component by choosing Unlock Component

from the context menu.

1 glyphsapp.com/learn/diacritics

Reusing Shapes Glyphs 3 Handbook, October 2021 132

https://glyphsapp.com/learn/diacritics
https://glyphsapp.com/learn/diacritics

9.1.10 Decomposing

Convert all components inside a glyph to paths by choosing

Glyph → Decompose Glyph (Cmd-Shift-D). All components,

including all nested components, will be decomposed into their

paths and anchors.

Choose Decompose from the context menu on a component

to only decompose the selected components. In this case, nested

components will not be decomposed.

9.1.11 Combining Paths and Components

As soon as there is a path on a layer, automatic alignment is

disabled. Therefore, be careful when combining components and

paths because shifts may occur, especially if the base glyph of the

component is changed. Instead, consider building the glyph from

components only and connecting them with anchors as outlined

in section 9.1.7, ‘Anchors’ (p. 129), thus enabling automatic

alignment. Consider defining glyphs as non-exporting if they are

only ever used as parts of other glyphs. See section 9.1.14,

‘Underscore Components’ (p. 134) and section 9.2, ‘Smart

Components’ (p. 134) for working with non-exporting

components.

When dragging an element, such as a node or an anchor, the

nodes inside components are highlighted. Dragging an element

near such a highlighted point snaps it to the position.

Choosing Path → Align Selection (Cmd-Shift-A) while exactly

one point and one component are selected will align the origin

point of the component to the selected node. The node keeps its

position. The origin point is where the baseline crosses the left

sidebearing if the italic angle is zero. If the component glyph

contains an ‘origin’ anchor, it is used as the origin

position instead.

9.1.12 Nesting Components

Glyphs allows components to be nested. For example, the

dieresiscomb (◌̈) can be built from two dotaccentcomb (◌̇)

components and also be used as a component in glyphs such as

edieresis (ë).

‘top’ and ‘bottom’ anchors propagate from a component to

the glyph in which the component is placed. For example,

consider a glyph E that has a ‘bottom’ anchor. When a composite

glyph, like Edieresis (Ë), uses E as a component, it inherits the

Reusing Shapes Glyphs 3 Handbook, October 2021 133

‘bottom’ anchor from the E. That way, bottom marks such as

circumflexbelowcomb (◌̭) can attach to the bottom of Edieresis,

even though it itself does not contain a ‘bottom’ anchor.

Propagated anchors are overwritten by anchors in the composite

glyph. Continuing the example, if the Edieresis glyph had its own

‘bottom’ anchor, then that would overwrite the ‘bottom’ anchor

of the E component.

Add a ‘Propagate Anchors’ custom parameter to the Font tab

in File → Font Info… with its checkbox unselected to prevent

anchor propagation.

9.1.13 Preferred Marks for Glyph Composition

When automatically building composites, Glyphs prefers marks

with the same name suffix as the composite. For instance, when

composing agrave.sc, Glyphs prefers a mark glyph named

gravecomb.sc over gravecomb if such a glyph exists. When

building uppercase letters, marks with a ‘.case’ suffix are

preferred. For example, when building the Agrave glyph, Glyphs

will use the mark gravecomb.case over gravecomb, if it exists.

This is helpful when the ‘.case’ diacritical marks are flattened to

accommodate the limited vertical space available in the

uppercase letters. The glyphs i and j are built from idotless and

jdotless with a dotaccentcomb. When building composite glyphs

based on i and j—such as imacron (ī) or jcircumflex (ĵ)—Glyphs

prefers mark glyphs ending in ‘.i’ or ‘.narrow’.

9.1.14 Underscore Components

By default, a glyph whose name starts with an underscore is not

exported. This allows for glyphs solely used as components in

other glyphs. Such glyphs might help to create ligature glyphs.

For example, both glyphs fl and f_f could use an _f.connect

component for the first f.

9.2 SMART COMPONENTS

Smart components allow for variation of design properties within

a single component glyph. Each smart component can have its

own set of variation properties such as width, height, angle,

roundness, or any other arbitrary design feature that can vary

along an axis. In this way, smart components work like multiple

masters or a variable font, but with the variation axes exclusive to

a component.

Reusing Shapes Glyphs 3 Handbook, October 2021 134

Smart components were initially designed for Asian scripts,

where shapes are frequently reused with slight modifications,

such as the strokes in CJK fonts or the components of the

Tibetan script. This concept—reusable components with property

variations—has proven useful for various scripts and glyphs.

9.2.1 Setting up Smart Glyphs

The glyph of a smart component is called a smart glyph. All CJK

radical and Korean base glyphs are smart glyphs. In addition, all

glyphs with a name starting with ‘_smart.’ or ‘_part.’ are

smart glyphs.

The different forms of a smart glyph (for example, Narrow and

Wide or Sharp and Rounded) are placed on smart layers. Click

the plus button in the bottom-left of the Layers palette to

create a new layer. New layers are named after the current date

and time, but that is not a good description for a smart layer.

Double-click the smart layer name and change it to a more

descriptive one such as ‘Narrow’, ‘Low Contrast’, ‘Small’, or any

other name that best describes the variation. For instance, for a

_part.arrow glyph with a Width property, draw a normal arrow on

the Regular master layer and a long version of the arrow on an

additional layer aptly named ‘Long’. Note that smart layers need

to be compatible with the master layer. For more on layer

compatibility, see section 13.5, ‘Outline Compatibility’ (p. 189).

Smart glyph properties control how the smart component

interpolates between the different layers. Add a property by

opening the Smart Glyph Settings with Edit → Info For Selection
(Cmd-Opt-I) or by choosing Show Smart Glyph Settings from the

component context menu. It is split into two tabs: Properties

and Layers.

Smart Glyph Properties Settings

Create a new property by clicking the plus button located in

the bottom-left of the Properties tab. Smart glyph properties are

similar to font axes. They have a name as well as minimum and

maximum values. The name can be chosen freely and may be

unrelated to the layer names or axes names of the font. The

names ‘Width’ and ‘Height’ have a special meaning; see

section 9.2.3, ‘Width & Height Properties’ (p. 137) for details.

The minimum and maximum values can be any number range,

but the minimum needs to be less than the maximum. Values can

Reusing Shapes Glyphs 3 Handbook, October 2021 135

be negative. The default range of 0–100 works well for abstract

properties such as ‘Contrast’ or ‘Curviness’. If the variation

property is less abstract and related instead to font units—such as

‘Height’ or ‘Descender Depth’—consider using measurements as

minimum and maximum values. Continuing the _part.arrow

example, if the normal arrow is 445 units wide and the arrow on

the ‘Long’ layer is 645 units wide, add a ‘Width’ property with a

minimum of 445 and a maximum of 645.

Note that smart components can be interpolated and

extrapolated. This allows the usage of values below the minimum

and above the maximum. For example, a _part.arrow component

with a ‘Width’ property ranging from 445 to 645 can also be used

with a ‘Width’ value of 210 or 936. Extrapolation works well for

simple variations such as the tail of an arrow getting longer and

shorter but might produce less desirable results for more

complex smart components such as the arch of an n getting

wider and narrower.

Use a minimum of 0 and a maximum of 1 for properties that

should not interpolate and instead only be used as an

on/off toggle.

Smart Glyph Layers Settings

The Layers tab connects smart properties with smart layers. The

sidebar shows all smart layers of the glyph. Select a layer and set

whether it belongs to the minimum or maximum value. If a layer

is unrelated to a property, do not check any of the two values. For

instance, for a glyph with two layers—‘Regular’ and ‘Long’—and a

‘Width’ property, check the minimum Width value for the Regular

layer and the maximum Width value for the Long layer.

A setup with multiple properties does not require a layer at all

extremes. For example, a smart glyph with two

properties—‘Width’ (range 640–1250) and ‘Height’ (range

80–360)—only requires the following three layers:

Width Height

Regular 640 80

Wide 1250 80

Tall 640 360

Note that a layer at both maximum values (Width of 1256 and

Height of 360) is not required. Glyphs infers it from the Wide and

Reusing Shapes Glyphs 3 Handbook, October 2021 136

Tall layers. Consider adding a layer at both extremes only if the

inferred outlines are not as desired.

9.2.2 Using Smart Components

Add a smart component like any other component (as described

in section 9.1.1, ‘Building Composites’, p. 126). A smart component

is indicated by a Smart badge in its Info box.

If the Info box is not visible, select the smart component and

check View → Show Info (Cmd-Shift-I). Click the Smart badge in

the Info box or choose Edit → Info for Selection (Cmd-Opt-I) to

configure the selected smart components. If the Palette is visible

(Window → Palette) and View → Show Info is checked, the smart

component settings are also visible at the bottom of the Palette.

Use the slider to set the setting of a property

anywhere from the minimum to the maximum value. Use the

number field to input any value, which might also extrapolate

beyond the minimum and maximum values. If the min/max

values are 0/1, a checkbox
!

is displayed instead.

9.2.3 Width & Height Properties

Name smart glyph properties ‘Width’ or ‘Height’ (with a capital

letter) to control them with the bounding box. Select View →
Show Bounding Box (Cmd-Opt-Shift-B) and click on a smart

component to show its bounding box. Resizing the bounding box

horizontally changes the ‘Width’ property; resizing vertically

changes the ‘Height’ property. Resizing the bounding box is

impossible for a smart component with neither a Width nor a

Height property.

9.2.4 Smart Handles

Smart handles allow properties to be modified using control

handles placed on the smart glyph. Place an anchor with the

name of a smart glyph property on every smart glyph layer. The

anchor names must match the name of the property exactly,

including capitalization. On smart glyph layers affecting the

property, move the anchor to match the modified outlines. These

anchors do not need to be added for all properties.

When using the smart glyph as a component, gray handles will

appear when the component is selected. Click and drag a handle

to change its property value.

Reusing Shapes Glyphs 3 Handbook, October 2021 137

9.3 CORNER COMPONENTS

Corner components are open paths that can be fitted to the

corners of a path. The main usage of corner components is

adding serifs to stems, but they can also be used in other

circumstances.

9.3.1 Creating Corner Glyphs

The name of a corner glyph starts with ‘_corner.’ followed by an

arbitrary corner name, for example, ‘_corner.serifLeft’. A corner

glyph contains an open path drawn, flanking the layer origin at

coordinates (0, 0). If an anchor named ‘origin’ is placed on the

layer, it is used as the origin point.

The open path of the corner component should follow the

same direction as it would if it were part of a stem. Typically, the

start node of the path is placed on the same vertical or horizontal

axis as the origin point. The relative position of the end node

defines the direction in which the corner expands. For example,

place the end node to the right of the origin if the corner should

expand to the left of the stem.

The corner will extend in the wrong direction (for example, to

the bottom instead of to the left) if the path direction is not set

correctly. Fix the path direction by choosing Path → Correct Path
Direction (Cmd-Shift-R), or hold down the Option key to apply

the command to all masters (Cmd-Opt-Shift-R).

Optionally, a ‘left’ or ‘right’ anchor can be added to the corner

glyph. These anchors control the fitting when adding corners to

diagonal stems. Use a ‘left’ anchor for left-facing corners and a

‘right’ anchor for right-facing corners. Place the anchor between

the origin and the start node of the open path (or beyond the

start node for extreme changes to the fitting). If no ‘left’ or ‘right’

anchor is used, Glyphs assumes its position at the origin.

9.3.2 Using Corner Components

Add a corner component to a node in another glyph by selecting

the node and choosing Add Corner Component from the context

menu. A glyph picker will open, showing only corner glyphs.

Search for the desired corner and insert it by pressing Return.

Press Escape to not add a corner.

In Edit View, a corner component is highlighted with a subtle

blue background. Click on a corner component to select it.

Shift-click to select multiple corners. A selected corner can be

Reusing Shapes Glyphs 3 Handbook, October 2021 138

copied with Edit → Copy (Cmd-C) and pasted onto other nodes

with Edit → Paste (Cmd-V). Press the Delete key to remove the

selected corner components. Control-click or right-click a corner

and choose Decompose Corner to replace the component by its

path. Select a corner component to view its Info box. (View →
Show Info, Cmd-Shift-I, also needs to be selected.)

Click the component name in the Info box to replace it with a

different component. Click the arrow button to add and

activate the corner glyph in Edit View. Use the�horizontal and

�vertical scale fields to change the size of the corner. This might

be useful for increasing the size of serifs for capital letters or

reducing it for small caps. Negative values (such as ‘-100’) may

be used to flip the component. This allows a bottom-left serif to

be reused on the top-left, the bottom-right, and the top-right.

The mirror buttons from the Palette (see p. 62) can also be used

to flip corner components.

Corner components can be attached to vertical paths. In that

case, choose one of the four alignment modes in the Info box:

The left arrow aligns the start node to the diagonal while the

end node of the corner stays put. This mode is typically used for

bottom-left and top-right serifs.

The right arrow aligns the end node to the diagonal while the

start node of the corner stays put. This mode is typically used for

bottom-right and top-left serifs.

The left-right arrow is a blend of the left and right alignment.

This mode is typically used for ink-traps and similar corners.

The x-mark does not align the start or end node to

the diagonal.

9.3.3 Extra Nodes

Choose View → Show Nodes → Extra Nodes to show the nodes

located on the intersections of overlapping paths. These extra

nodes can also receive corner components. Attach a corner

component to an extra node from the context menu with Add

Corner Component.

Use corner components on extra nodes for smooth transitions

between stems and crossbars or to add ink traps to path

intersections.

Reusing Shapes Glyphs 3 Handbook, October 2021 139

9.4 CAP COMPONENTS

Cap components attach to two nodes, unlike corner components

(see p. 138), which attach to a single node. The two nodes need to

be next to each other on the same path. Use cap components for

spurs, terminals, flag serifs, and other shapes that appear at the

end of strokes.

9.4.1 Creating Cap Glyphs

The name of a cap glyph starts with ‘_cap.’ followed by an

arbitrary cap name, for example, ‘_cap.strokeend’. A cap glyph

contains an open path drawn relative to the layer origin at

coordinates (0, 0). If an anchor named ‘origin’ is placed on the

layer, it is used as the origin point.

Cap components need to contain two anchors, ‘node1’ and

‘node2’. These anchors will be attached to two nodes on the

receiving glyph. Typically, the two anchors are both placed

horizontally or vertically so that the component can attach to two

horizontal or vertical nodes. The cap component uses the

direction of the receiving path to match ‘node1’ to the first node

and ‘node2’ to the second node.

9.4.2 Using Cap Components

Attach a cap component to two adjacent nodes of the same path

by selecting them and choosing Add Cap Component from the

context menu. A glyph picker will open, showing only cap glyphs.

Search for the desired cap and insert it by pressing Return. Press

Escape to not add a cap.

In Edit View, a cap component is highlighted with a subtle

blue background. Click on a cap component to select it.

Shift-click to select multiple caps. A selected cap can be copied

with Edit → Copy (Cmd-C) and pasted onto other segments with

Edit → Paste (Cmd-V). Press the Delete key to remove the

selected cap components. Control-click or right-click a cap and

choose Decompose Cap to replace the component by its path.

Select a cap component to view its Info box. (View → Show Info,

Cmd-Shift-I, also needs to be selected.)

Check the Fit checkbox to automatically match the size of the

cap to the size of the stroke to which it is attached. Cap

components can be replaced, transformed, and aligned like

corner components. See section 9.3.2, ‘Using Corner

Components’ (p. 138) for details.

Reusing Shapes Glyphs 3 Handbook, October 2021 140

9.5 SEGMENT COMPONENTS

Segment components apply an open path to straight or curved

segments. The open path can be a single bend segment or a

more complex path containing many nodes and curves.

Glyphs will not add additional nodes when bending a segment

component to fit a curve segment. This may reduce the accuracy

with which the component follows the curvature of the segment.

However, it ensures that the number of nodes stays the same

across masters, allowing interpolation for multiple masters and

variable fonts.

9.5.1 Creating Segment Glyphs

The name of a segment glyph starts with ‘_segment.’ followed by

an arbitrary segment name, for example, ‘_segment.bend’. A

segment component contains an open path along the baseline

and two anchors, ‘start’ and ‘end’. Choose Glyph → Set Anchors
(Cmd-U) to place these anchors at the start and end nodes of the

open path. If the ‘start’ and ‘end’ anchors are not placed on the

start and end nodes of the path, then the segment component

will not match the length of the segment it is applied to.

The start and end nodes of the path should be on the baseline

or have both the same distance from the baseline.

9.5.2 Using Segment Components

Select a path segment by clicking it or by selecting both of its

nodes, then choose Add Segment Component from the context

menu. A glyph picker will open, showing only segment glyphs.

Search for the desired segment and insert it by pressing Return.

Press Escape to not add a segment component.

In Edit View, a segment component is highlighted with a

subtle blue background. Click on a segment component to select

it. Shift-click to select multiple segments. A selected segment can

be copied with Edit → Copy (Cmd-C) and pasted onto other

segments with Edit → Paste (Cmd-V). Press the Delete key to

remove the selected segment components. Control-click or

right-click a segment and choose Decompose Segment

Component to replace the component by its path. Select a

segment component to view its Info box. (View → Show Info,

Cmd-Shift-I, also needs to be selected.)

Click the component name in the Info box to replace it with a

different component. Click the arrow button to add and

Reusing Shapes Glyphs 3 Handbook, October 2021 141

activate the segment glyph in Edit View.

9.6 BRUSHES

Brushes expand path segments using custom outlines. A brush

can be applied to straight and curved path segments and is most

useful when applied to open paths.

9.6.1 Creating Brush Glyphs

The name of a brush glyph starts with ‘_brush.’ followed by an

arbitrary brush name, for example, ‘_brush.arrow’. A brush glyph

contains a single closed path and two anchors, ‘start’ and ‘end’.

Choose Glyph → Set Anchors (Cmd-U) to place anchors on the

left and right of the layer. Typically, the two anchors are placed

on the baseline or have both the same distance to the baseline.

A brush glyph may contain only one single closed path. Use

Path → Remove Overlap (Cmd-Shift-O) to merge multiple closed

paths to a single path. For example, a _brush.arrow glyph might

contain the shape of a rightward pointing arrow. Place the ‘start’

and ‘end’ anchors such that the part of the brush that stretches

and curves is in between the two anchors. Place non-stretching

and non-curving parts of the brush before the ‘start’ and after the

‘end’ anchor, like this:

Parts of the brush that should bend when following a curve

segment need handles, as shown in the image above. Add

handles to a segment by Option-clicking it.

9.6.2 Using Brushes

Select a path segment by clicking it or selecting both of its nodes

and choose Add Brush from the context menu. A glyph picker will

open, showing brush glyphs only. Search for the desired brush

and insert it by pressing Return. Press Escape to not add a brush.

Typically, brushes are applied to open paths consisting of a

single segment. Brushes can be added to multiple segments by

selecting more than one segment before choosing Add Brush. If

nodes are selected, choosing Add Brush will add brushes such

that the selected nodes are the end nodes of the new brushes.

A brush is highlighted with a subtle blue background. Click on

the outline of a brush to select it. Shift-click to select multiple

brushes. A selected brush can be copied with Edit → Copy
(Cmd-C) and pasted onto other segments with Edit → Paste
(Cmd-V). Press the Delete key to remove the selected brushes.

Reusing Shapes Glyphs 3 Handbook, October 2021 142

Control-click or right-click a brush and choose Decompose

Brush to replace the component by its path. Select a brush to

view its Info box. (View → Show Info, Cmd-Shift-I, also needs to

be selected.)

Click the component name in the Info box to replace it with a

different component. Click the arrow button to add and

activate the brush glyph in Edit View.

9.7 PIXEL TOOL

The Pixel tool (shortcut X, Shift-B if the Pencil tool is selected)

draws pixel components. Use the pixel tool to create pixel fonts

and pixel symbols.

9.7.1 Setup

The Pixel tool requires a grid spacing of 2 or above. Change it in

File → Font Info… → Other → Grid Spacing. See section 8.5.1, ‘Grid

Spacing & Subdivision’ (p. 122) for details.

The Pixel tool uses the glyph named ‘pixel’ to draw pixels

when clicking and dragging in Edit View. If the glyph named

pixel is not already in the font, Glyphs will offer to add it upon a

click with the Pixel tool:

Click Add to create the pixel glyph. By default, the pixel glyph is

a square of the same size as the grid spacing.

9.7.2 Drawing Pixels

Select the Pixel tool, click once, and add a pixel component on

the canvas. Click again to remove the pixel. Click and drag the

mouse to add multiple pixels. Start to drag on a pixel already in

place to remove pixels while dragging.

Reusing Shapes Glyphs 3 Handbook, October 2021 143

9.7.3 Pixel Shape

The pixel glyph can be modified to contain any arbitrary shape.

Reduce the grid spacing to a lower number (for example, the

default of 1) to draw path segments smaller than a pixel. For

instance, the pixel can be an x-mark for a stitch effect.

Increase the grid spacing again when using the Pixel tool.

Reusing Shapes Glyphs 3 Handbook, October 2021 144

10 Spacing & Kerning

The space between glyphs is controlled by their spacing and

kerning. Spacing defines the general white space surrounding a

glyph while kerning makes adjustments to specific glyph pairs.

10.1 SPACING

Spacing is the process of adjusting the sidebearings of glyphs to

achieve an even rhythm in a line of text. There are no fixed rules

for how large or small the sidebearings of a glyph should be. The

amount of spacing depends on the style of the font and the script

of the glyphs. In general, glyphs that share similar shapes share

similar sidebearing values. For example, the left sidebearing of

the Latin K is usually the same as the left sidebearing of the Latin

H, while the right sidebearing of the Latin D and the Latin O

should be the same or similar.

When the Text tool is active and View → Show Metrics

(Cmd-Shift-M) is checked, the sidebearing values and widths of

all glyphs are displayed:

10.1.1 Info box

The Info box (View → Show Info, Cmd-Shift-I) shows the

sidebearings of the current glyph. In text mode, the current glyph

is placed after the text cursor. For left to right and right to left

scripts, the sidebearing values are shown to the left and right of

the metrics icon in the center of the Info box:

For a top to bottom script, the Info box shows the top and

bottom sidebearings next to the T and B:

Use the Up and Down arrow keys to increase and decrease a

value in the Info box. Hold down Shift for steps of 10 and both

Shift and Command for steps of 100.

Editing sidebearings in the Info box can be handy for quick

adjustments. When editing the spacing of many glyphs, consider

using the spacing shortcuts.

Glyphs 3 Handbook, October 2021 145

10.1.2 Spacing Shortcuts

Mnemonic: the Control key is

located on the left, and the

Command key is on the right.

Control: left sidebearing.

Command: right sidebearing.

Spacing shortcuts can be used with the Text tool to change the

sidebearings of the current glyph. Hold down the Control key to

change the left sidebearing (LSB) with the Left Arrow and Right

Arrow keys (⌃⯇ and ⌃⯈). Hold down the Command key to

change the right sidebearing (RSB) with the Left Arrow and Right

Arrow keys (⌘⯇ and ⌘⯈). Hold down Shift for steps of 10.

Ctrl-Left increase spacing on left side

Ctrl-Shift-Left increase spacing on left side by 10 units

Ctrl-Right decrease spacing on left side

Ctrl-Shift-Right decrease spacing on left side by 10 units

Cmd-Right increase spacing on right side

Cmd-Shift-Right increase spacing on right side by 10 units

Cmd-Left decrease spacing on right side

Cmd-Shift-Left decrease spacing on right side by 10 units

When both the Control and Command keys are held down,

the LSB and RSB are changed simultaneously, shifting the glyph

inside its width. This is particularly useful in monospaced designs,

where the width of the glyph cannot be changed.

Cmd-Ctrl-Left shift glyph outline left

Cmd-Ctrl-Shift-Left shift glyph outline left by 10 units

Cmd-Ctrl-Right shift glyph outline right

Cmd-Ctrl-Shift-Right shift glyph outline right by 10 units

The Control and arrow key shortcuts (⌃⯇ and ⌃⯈) conflict

with the default system shortcuts for Mission Control. If they do

not work in Glyphs, disable or change them in System

Preferences → Keyboard → Shortcuts →Mission Control.

10.1.3 Metrics Keys

Metrics keys can be used instead of numeric metrics values to link

the metrics—the LSB, RSB, and width—of one glyph to those of

another. Write the name of a glyph in a sidebearing or width field

in the Info box to use the metric value of that glyph. For example,

the LSB of an h could be linked to the l and its RSB to the n:

Spacing & Kerning Glyphs 3 Handbook, October 2021 146

Linked metrics are not synced automatically when the metrics of

the linked glyphs are changed. Instead, in Edit View, out-of-sync

metrics keys are displayed in red next to an update button:

Sync a metric key by clicking its update button. Fix all

out-of-sync metrics on the current layer by choosing Glyph →
Update Metrics (Cmd-Ctrl-M). Hold down the Option key to

update the metrics on all masters (Cmd-Ctrl-Opt-M). These

commands also work when multiple glyphs are selected.

In Font View, out-of-sync metrics are indicated by a

warning triangle in the top right corner of the glyphs cells.

Consider using a smart filter (see p. 92) to reveal all of the glyphs

with out-of-sync metrics.

Metrics Key Calculations The sidebearing fields can contain

simple calculations following these rules: a calculation starts with

an equal sign (=) and a glyph name, followed by a mathematical

operator, + (plus, addition), - (minus, subtraction), * (asterisk,

multiply), or / (forward slash, divide), and ends with a number. For

example, ‘=n+10’ is the metric value of the n glyphs plus 10, and

‘=comma/2’ indicates half the metric value of the comma glyph.

Decimal numbers can also be used: ‘=o*1.2’ or ‘=koKai-thai/1.5’.

The result of a calculation is rounded to the nearest font unit.

Constant Metrics Keys Equating with a number such as ‘=50’

fixes a metric to that value. This is helpful if the metric should

keep its value even when the outlines are changed. A calculation

that only contains a glyph name (such as ‘=n’) has the same effect

as writing just the glyph name (‘n’).

Mirrored Metrics Keys Place a pipe character (|) directly after

the equals sign to reference the opposite sidebearing. For

example, writing ‘=|n’ in the right sidebearing of the u uses the

value of the left sidebearing of the n. Keep a glyph centered by

writing ‘=|’ into one of its sidebearing fields. Such a value will

reflect the opposite sidebearing of the same glyph, thus centering

the glyph outlines inside its bounding box.

Spacing & Kerning Glyphs 3 Handbook, October 2021 147

Local Metrics Keys By default, a metrics key applies to all

masters of the font. Prefix a metrics key with two equals signs

(‘==’) instead to specify a local metrics key. Local metrics keys do

not affect other masters and can be used as exceptions.

Examples: ‘==m’ or ‘==hyphen+15’.

Metrics Keys at Baseline Offsets Add an at-sign (@) and a

number at the end of a metrics key to measure a sidebearing at a

specific offset from the baseline. For example, ‘=A@0’ is the

sidebearing of A on the baseline, and ‘=A@200’ is the

sidebearing value of A as measured 200 units above the baseline.

10.1.4 Metrics Keys and Automatic Alignment

The metrics fields in the Info box of an automatically aligned

glyph (see p. 130) show the text ‘auto’ and the derived values in

parentheses. Modify an automatic metric while keeping it

automatically aligned by entering an equals sign, a plus or minus

sign, and the offset value that should be added or removed. For

example, ‘=+25’ or ‘=-10’.

Modifying automatic metrics can be useful for glyphs where a

mark reaches far outside the glyph box. Typical examples are the

idieresis (ï) or the dcaron (ď) and the lcaron (ľ).

10.2 KERNING

Carefully spaced glyphs should fit together well in words and

sentences. Some glyph combinations, however, need specific

adjustments to look good. Usually, glyphs with a lot of

white space (such as A and V) need to be moved closer together.

In contrast, glyphs that collide (such as f and ?) need to be moved

further apart. Kerning is the adjustment of the distance

between glyphs.

Note that left to right kerning is stored separately from right

to left kerning. When working with a font that includes glyphs of

both directions, make sure to select the correct writing direction

before kerning. See section 4.9.4, ‘Writing Direction’ (p. 47)

for details.

With the Text tool active, kerning between glyphs is

highlighted in light blue for negative kerning and yellow for

positive kerning. These colors can be changed in the Appearance

preferences (see p. 14).

Spacing & Kerning Glyphs 3 Handbook, October 2021 148

10.2.1 Kerning Modes

Edit View has three kerning modes: no kerning , kerning ,

and locked kerning . Cycle between the modes by clicking the

icon located in the bottom right of the Edit View canvas.

No kerning disables the preview of kerning in Edit View.

The kerning shortcuts (see p. 149) are also disabled in this mode.

Kerning previews kerning pairs in Edit View.

Locked kerning works like the normal kerning mode but

disables the spacing shortcuts (see p. 146), preventing accidental

spacing changes while kerning.

10.2.2 Info box

In Edit View, the Info box (View → Show Info, Cmd-Shift-I)

displays the kerning between the current glyph and the

immediate glyph on each side. When no kerning is set, the gray

placeholder ‘Kern’ is visible.

Click a kern field, enter an adjustment value, and confirm by

pressing Return or by exiting the kern field. Clear a kern field to

remove the kern between the two glyphs. Activate the Text tool

to see a small Info box for the preceding glyph. The box provides

the name of the preceding glyph, its lock status, and kerning

group name:

See section 10.2.4, ‘Kerning Groups’ (p. 150) for details on the

‘Group’ fields in the Info box and section 10.2.5, ‘Kerning Group

Exceptions’ (p. 151) for working with the kerning locks.

Editing kerning in the Info box can be handy for quick

adjustments. When kerning many glyph pairs, consider using the

kerning shortcuts.

10.2.3 Kerning Shortcuts

Mnemonic: the Control key is

located on the left, and the

Command on the right.

Control: left glyph.

Command: right glyph.

The kerning shortcuts can be used with the Text tool. Type the

two glyphs in Edit View, then place the cursor between them and

hold down the Option and Control keys to change the kerning

value between the current and the left glyph with the Left Arrow

and Right Arrow keys (⌃⌥⯇ and ⌃⌥⯈). Hold down Option and

Command to change the kerning between the current and the

right glyph (⌥⌘⯇ and ⌥⌘⯈). Hold down Shift for steps of 10.

Ctrl-Opt-Left increase kerning on left side

Ctrl-Opt-Shift-Left increase kerning on left side by 10 units

Ctrl-Opt-Right decrease kerning on left side

Spacing & Kerning Glyphs 3 Handbook, October 2021 149

Ctrl-Opt-Shift-Right decrease kerning on left side by 10 units

Cmd-Opt-Right increase kerning on right side

Cmd-Opt-Shift-Right increase kerning on right side by 10 units

Cmd-Opt-Left decrease kerning on right side

Cmd-Opt-Shift-Left decrease kerning on right side by 10 units

10.2.4 Kerning Groups

Many glyphs with similar forms should have the same kerning

values. Kerning groups capture these similarities and reduce the

number of pairs that need to be set manually. Kerning then

applies not just to pairs of glyphs but to groups of pairs of glyphs.

For example, B, D, E, F, H, and so on may form a left side kerning

group. Also, V, W, Ẃ, Ŵ, Ẅ, and so on might share both the left

and the right kerning groups. For example, if A and Ä are in the

same kerning group, kerning A to V also kerns the Ä–V pair.

Additionally, if V is in a group with W, A–W and Ä–W will also be

kerned by the same amount. All members of a kerning group

have the same kerning values unless a kerning exception is

defined (see section 10.2.5, ‘Kerning Group Exceptions’, p. 151).

A glyph can have two kerning groups: one on the left and one

on the right. Glyphs written from top to bottom have a top and

bottom group instead.

The name of a kerning group is written into the ‘Group’ fields

in the Info box (View → Show Info, Cmd-Shift-I). Edit the kerning

groups of multiple glyphs in the inspector in Font View (see p. 83)

or select multiple glyphs in Edit View. Group names can contain

the letters a–z and A–Z, the digits 0–9, and an underscore (_),

period (.), or hyphen (-). Rename kerning groups in the

Kerning Window (see p. 151).

It is common to name kerning groups after a base glyph. For

example, R, Ŕ, Ř, and Ŗ may all have the right kerning group ‘R’.

The left kerning group might be named ‘I’ or ‘H’. However, it can

also be named ‘stem’ or any arbitrary name.

Another example: the glyphs c, d, e, o, and q could share a left

kerning group named ‘o’. In that case, kerning ‘To’ will also kern

all other group members. However, while ‘To’ might look good,

kerning ‘Tö’ by the same amount will probably look too tight.

There are two solutions for this issue: either ö could be placed in

a different left kerning group than o, or kerning group exceptions

(see p. 151) could be used for ö.

Spacing & Kerning Glyphs 3 Handbook, October 2021 150

Show all kerning group members in the background by

choosing View → Show Group Members. The group members are

only shown for the current glyph and the one placed before it on

the canvas. Only members of the respective kerning group are

shown. For example, when editing the P glyph, only its left

kerning group members are shown in the background. This

display option is helpful to spot possible collisions.

10.2.5 Kerning Group Exceptions

A kerning group exception overwrites the kerning values of a

group for a specific pair. For example, if o and ö have the same

left kerning group, the kerning value of ‘To’ might be too tight

for ‘Tö’.

Create a group exception for ‘Tö’ by selecting the Text tool,

then place the text cursor between T and ö. In the Info box

(View → Show Info, Cmd-Shift-I), open the lock of the ö to

mark it as an exception. Now, editing the kerning value between

T and ö will not affect any of the other glyphs having the same

left kerning group as ö. However, keep the lock of the T glyph

locked so that the new T–ö kerning exception also applies to

other group members of the right ‘T’ kerning group, for example,

Ť–ö, Ţ–ö, and Ț–ö. Close the kerning lock to remove an exception.

10.2.6 KerningWindow

Open the Kerning Window by choosing Window → Kerning
(Cmd-Opt-K). It provides a list of all kerning pairs for the

currently selected writing direction. See section 4.9.4, ‘Writing

Direction’ (p. 47) for details on changing the writing direction.

Viewing Kerning Pairs

Enter a search term in the search field to filter for kerning pairs

containing it. Click the search icon to configure the search

options. Choose how the search term should be applied (kerning

pair contains, is exactly, begins with, ends with, or does not

contain the term), which pairs to show (is a group or is not a

group), on which side of the pairs to search (left or right), or

whether or not to show only glyphs that are selected in Font View.

Choose Reset to reset all options back to their default.

Kerning groups are shown in blue with an at-sign (@) before

their name, while single glyphs are shown in gold. Click a column

header (Left, Value, Right) to sort by that column. Click again to

Spacing & Kerning Glyphs 3 Handbook, October 2021 151

reverse the sort order. Sorting by value is helpful to spot

particularly small or large kerning values.

Click a kerning pair to display it in Edit View. The current

glyph pair in Edit View, if any, will be replaced by the selected

pair. Use the Up and Down arrow keys to walk through the

kerning pairs of the font. When selecting a row containing one or

two kerning groups, only a single example is shown. Insert all

kerning pairs belonging to the selected row into Edit View by

choosing Show All Glyphs from the actions menu.

Editing Kerning Pairs

Double-click an entry in the Kerning Window to edit it. Edit a

value to adjust the kerning between a pair. Edit a group name to

rename the group. Renaming a group will prompt whether to

change the group name for only the selected kerning pair or

rename the group across the entire font. Since left and right

kerning groups are separate, renaming a group in the Left column

will not affect any entries in the Right column and vice versa.

Copy the selected kerning pairs with Edit → Copy (Cmd-C).

Select all kerning pairs by choosing Edit → Select All (Cmd-A).

Switch to another font master and paste the copied pairs with

Edit → Paste (Cmd-V). If pasting would overwrite existing kerning

pairs, Glyphs will show a warning. Choose Overwrite to paste the

copied pairs and overwrite any the conflicting kerning pairs.

Choose Keep Existing to paste only non-conflicting pairs.

Delete all selected kerning pairs by pressing the minus

button in the bottom left of the Kerning Window.

Maintaining Kerning Pairs

Kerning pairs can become obsolete when glyphs are removed

from the font, or a kerning group no longer has any members.

Delete all obsolete kerning pairs by choosing Clean Up from the

actions menu.

Choose Compress from the actions menu to reduce the

number of kerning pairs in the font. When a few glyphs were

kerned with each other before the kerning groups were set, the

singleton kerning pairs can be converted into group kerning with

the Compress action. Compressing kerning changes kerning pairs

between two glyphs or between a glyph and a group such that

kerning groups are used wherever possible. Kerning exceptions

Spacing & Kerning Glyphs 3 Handbook, October 2021 152

are kept unless the exception has the same kerning value as the

group kerning (meaning, it’s not a real exception). The Compress

action might need to be run multiple times to compress all

kerning pairs fully.

For example, consider a kerning pair T–m, which is a kerning

between the glyphs T (right group: @T) and m (left group: @n).

Compressing once will turn it into the kerning pair @T–m.

Compressing a second time will turn it into @T–@n. Now, this

kerning pair applies to all glyphs in the @T right group and the @n

left group, such as Ť–m, T–n, T–ŋ, and Ť–ŋ. However, it will keep

exceptions such as T–ň, provided it has a different value than T–n.

10.2.7 Manual Kerning Code

While kerning is implemented as an OpenType feature, it does

not appear in the Features tab of the Font Info window. Instead,

it is added as an implicit feature (see p. 121). However, an explicit

‘kern’ feature can also be added for performing

contextual kerning.

In File → Font Info… → Features, add a new feature named

‘kern’. The ‘kern’ feature typically uses positioning (pos) rules to

change the distance between glyphs.

Contextual kerning matches more than two glyphs and can be

helpful when dealing with punctuation or spaces. For example,

the f might get some extra spacing to the right when it is

followed by a space glyph and a glyph that extends far to the left

on the top, such as T or V.

pos f' 50 space [T V W Y];

Kerning groups can be reused in feature code. The name of a left

kerning group is prefixed by @MMK_R_ while a right kerning group

is prefixed by @MMK_L_. For example, the left kerning group @H

has the feature class @MMK_R_H and the right group @quote has

the class @MMK_L_quote. Note that the R and L in the prefixes are

with respect to the other glyph of the kerning pair: a left kerning

group is used on the right (R) of a pair while a right kerning group

is used on the left (L) of a pair.

For example, consider the glyph sequence L–quoteright–A

(L’A). With pair kerning, the quote might get pulled into the

white space of the L and also in the white space of the A, making

the L and A collide on the baseline: L’A. A contextual kern can fix

this situation by pulling the quoteright into the white space of the

L (-50) while pushing the A to the right (70):

Spacing & Kerning Glyphs 3 Handbook, October 2021 153

pos @MMK_L_L' -50 quoteright' 70 @MMK_R_A;

Manual kerning code can also make use of Tokens (see p. 117),

which allow the glyph positioning to be based on Number Values

of masters or the sidebearings of glyphs. See section 8.4.4,

‘Tokens’ (p. 117) for details.

Spacing & Kerning Glyphs 3 Handbook, October 2021 154

11 PostScript Hinting

PostScript hinting is a method to improve display at low

resolutions for fonts with PostScript/CFF outlines. TrueType

flavor OpenType fonts use a different method for hinting; see

chapter 12, ‘TrueType Hinting’ (p. 164) for details.

The eventual picture on the screen is created by a software

called the rasterizer. Hints help the rasterizer to create a more

even glyph image. Especially stems are harmonized to look

similar across a line of text. PostScript hints are simpler but also

less flexible than TrueType hints.

Most hinting information revolves around determining which

part of a letter is a necessary stroke element and should not be

omitted at small sizes. There are two kinds of hints.

Font-level hints or font-wide hints store general information

that applies to the entire font and encompasses standard stems

and alignment zones.

Glyph-level hints are little pieces of information placed inside

a glyph that help the rasterizer stretch the outline across the pixel

grid. They can either be stem hints or ghost hints.

The best practice is choosing good font-level hints and letting

an algorithm called the autohinter find the glyph-level hints.

Hinting only makes sense if the font has repeated regular

features. If the font is very irregular, like many handwritten fonts

are, or like ornamental and grunge fonts, then hinting cannot

help to improve the rendering. Also, suppose a font is intended

for exclusive use in environments where hinting information is

ignored, like displays with a very high resolution, or on Apple

hardware running macOS or iOS. In that case, the hinting

information is not used and will only make the font file larger.

Consider not hinting or disabling any existing hinting for

such projects.

Note that PostScript hinting intends to create a sharper, more

consistent pixel image at low resolutions. That means that the

outline will be distorted to achieve a better fitting on the pixel

grid. In other words, hinting does not preserve shapes; on the

contrary. Hinting does not make sense for fonts where the

preservation of the shape is more important than a crisp pixel

image, such as in connecting script typefaces and icon fonts.

Glyphs 3 Handbook, October 2021 155

11.1 FONT-WIDE HINTS

Before adding glyph-level hinting, define a set of parameters that

apply to all hinting throughout the font. These font-level hints are

stored in the so-called PostScript Private Dictionary inside the

exported font. For an in-depth discussion, see

the Adobe Type 1 Font Format specification¹;

Robothon 2012: Postscript hints,² a video presentation about

PostScript hinting by Miguel Sousa from Adobe.

11.1.1 Standard Stems

Stem widths are the thicknesses of letter strokes. A vertical stem

is the width of a vertical stroke of a letter, for example, the

thickness of the I, or the thicknesses of left and right curves of an

O. A horizontal stem is the thickness of a horizontal stroke

movement, for example, the serifs or crossbars of A and H, or t

and f, or the upper and lower curves of an O.

Standard stems are average values, as representative as

possible for as many stem widths in the font as possible. The

autohinter needs good standard stem values to recognize the

stems and insert glyph-level hints automatically. And the screen

rasterizer can make use of these values to optimize the pixel

rendering, especially synchronizing stem thicknesses across the

whole font at low resolutions.

Try to find as few as possible and as representative as possible

values for horizontal and vertical stem widths and enter them in

the Masters tab of Font Info (File → Font Info… →Masters,

Cmd-I). See section 8.2.5, ‘Stems’ (p. 109) for details on editing

stem values in Font Info.

If two values are close to each other, consider merging them

into one average value. Quickly measure the thickness of stems

by selecting two nodes and looking at the Info box (Cmd-Shift-I)

or by switching to the Measurement tool. See section 4.10,

‘Measuring’ (p. 47).

For instance, if the measured values are 68, 71, 72, 74, 75, 82,

83, and 85 for the vertical stems, pick 75 or 80 for the standard

vertical stem because either would be a good median value for

most of the stem measures.PPM stands for pixel per em

and is a measurement for

pixel density.

By using a single stem value, the

stems will scale more uniformly across low PPMs.

1 adobe-type-tools.github.io/font-tech-notes/pdfs/T1_SPEC.pdf, specifically

pages 35–45

2 vimeo.com/38364880, approximately 35 min

PostScript Hinting Glyphs 3 Handbook, October 2021 156

https://adobe-type-tools.github.io/font-tech-notes/pdfs/T1_SPEC.pdf
https://vimeo.com/38364880
https://adobe-type-tools.github.io/font-tech-notes/pdfs/T1_SPEC.pdf
https://vimeo.com/38364880

Theoretically, up to twelve stem width values can be

considered for each orientation. But the best practice of trying to

find as few as possible will typically either result in a single

representative value for all stems or in two values: one for

lowercase and one for uppercase letters, or (in the case of

horizontal stems) one for an average horizontal stroke, and one

for the serifs. Use a second or third value only if it is acceptable

that the associated stems will have different thicknesses at the

same pixel size. For instance, for a vertical standard stem set at

70 units and another at 80 units, the first stem may be displayed

two pixels wide, while the other stem may get three pixels at the

same pixel size.

The first horizontal and vertical stem values are the most

important ones. Use a value that represents the most-used

glyphs, typically the lowercase letters. Other functions in Glyphs

also use these values, such as the Cursify algorithm or the

Rounded Font filter. Any stem values that follow are exclusively

used for hinting. The horizontal stems also play a role in TrueType

hinting (see p. 164).

When interpolating between masters, stems with the same

name in both masters are used to interpolate the in-between

stem value.

11.1.2 Alignment Zones

When a font is rendered with very few pixels on a computer

screen, all the x-heights should use the same amount of pixels

vertically. The same applies to ascenders of letters like f, h, or k,

and to descenders of g, p or y, and to the heights of all capital

letters. For many designs, all letters should share the same

baseline when rasterized at a low resolution.

But all these letters usually do not align precisely. For instance,

the bottom of a lowercase o will extend slightly below the

baseline, while the serifs of an n may sit precisely on it. Or the

apex of an uppercase A may extend a little bit beyond the height

of an uppercase H. This difference, usually some ten to fifteen

units, is commonly referred to as overshoot.

Alignment zones are a way to tell the rasterizer about the

overshoots. Overshoots cannot help to provide an optically

balanced text at small pixel sizes, so their display should be

suppressed. More precisely, at low resolutions, any path

constellation with a horizontal stem or ghost hint attached to it

PostScript Hinting Glyphs 3 Handbook, October 2021 157

that reaches into an alignment zone will be vertically aligned to

the base of the zone.

Alignment zones take two values: a position and a size. The

position is the vertical height of the zone, usually the vertical

metrics, like x-height or ascender. The position is sometimes also

referred to as the flat edge of a zone. The size is the thickness of

the maximum overshoot that may appear at that position. If the

overshoot extends above the position (x-height, small caps height,

cap height, ascender), the size value must be positive. Such zones

are referred to as top zones. If, however, the overshoots extend

below the position (typically for the baseline or descender), the

size must be negative and is referred to as a bottom zones. See

section 8.2.4, ‘Metrics & Alignment Zones’ (p. 108) for details on

editing the alignment zones of a font master.

A typical alignment zone

setup: top zones with positive

sizes at ascender, cap height

and x-height; bottom zones

with negative sizes at baseline

and descender.

Alignment zones should be as small as possible, so do not try to

make them larger ‘to be on the safe side’. More precisely, the

maximum size of an alignment zone is constrained by the

blueScale value (see below), which implies that no zone must be

larger than 240 ÷ (240 × blueScale − 0.98). In any event, a zone

must not be larger than 25 units. There may be a maximum of 6

top zones, 5 bottom zones, and the baseline zone. Zones must

not overlap. There must be a minimum distance of one unit

between them; the larger, the better. The baseline zone must

have a position value of zero.

If the font uses an alternative grid (see section 8.5.1, ‘Grid

Spacing & Subdivision’, p. 122), extend the scope of the zones by

one unit in both directions to catch potential small rounding

errors for vertical node positions. That is, the position must be

shifted by one unit and the size by two units. Only the baseline

zone must be kept at position zero while its size is increased

by one unit.

PostScript Hinting Glyphs 3 Handbook, October 2021 158

11.1.3 Custom Parameters

Apart from the alignment zones and standard stems, there are

more optional parameters in the Private Dictionary: ‘blueFuzz’,

‘blueScale’, ‘blueShift’, and ‘Family Alignment Zones’. In Glyphs,

set these values as custom parameters. See the description in

Glyphs when adding the custom parameters for more details.

11.2 AUTOHINTING

If the font-wide parameters (alignment zones and standard

stems) are correctly set, let the autohinting algorithm do its magic

by simply activating the Autohint option in the File → Export
dialog. Enforce this setting with the Autohint custom parameter.

Test the hinting in an Adobe application (see section 4.13.6,

‘Previewing in Adobe Applications’, p. 58). Write a test text and

zoom out far enough to display the letters with a few pixels only.

Then zoom in using the operating system’s Zoom function

(configurable in the Accessibility settings of the System

Preferences). If necessary, tweak the font settings or manually

hint a problematic glyph and re-export. For details on manual

hinting, see section 11.3, ‘Manual hinting’ (p. 160).

11.2.1 Flex Hints

Flex hints: Nodes 1 and 3 are

on the same level and inside

the alignment zone, node 2

should be exactly on the flat

edge of the zone. The handles

must stay inside the space

defined by nodes 1 through 3.

If the font has cupped serifs or slightly tapered stems, the

autohinter can automatically apply so-called flex hints. Flex hints

suppress the display of such shallow curves at low resolutions.

They cannot be set manually but are automatically applied when

the font is exported. For flex hinting to kick in, a few conditions

must be met.

First, the ‘blueShift’ value must at least be set to the depth of

the cups plus one. For example, if the serifs are cupped 5 units

deep, ‘blueShift’ should be set to 6 or more. Set ‘blueShift’ as a

custom parameter in File → Font Info… → Font (Cmd-I).

Secondly, there are a few outline requirements. The cup or

tapering must be built from exactly two consecutive outline

segments between three nodes. The segments do not need to be

PostScript Hinting Glyphs 3 Handbook, October 2021 159

symmetrical. The first and third nodes must share the same X

coordinate (for tapered stems) or the same Y coordinate (for

cupped serifs). The four handles need not be entirely horizontal

(serifs) or vertical (stems), but the three nodes must be placed on

the extremes of the two segments. The overall depth must not

exceed 20 units.

Thirdly, in the case of cupped serifs, it is recommended that

the three points are completely submerged in the respective

alignment zone. For best results, the second node (in the middle)

should be precisely on the flat edge of the zone. And the other

two nodes must reach into the zone. This means that cupped

bottom serifs reach a little bit below the baseline and into its

bottom zone, which may seem counter-intuitive at first.

11.3 MANUAL HINTING

The implementation of PostScript hinting in Glyphs allows

manual and automatic hints inside the same font. Before

resorting to manually inserting hints, try to get as far as possible

with autohinting. Only glyphs that do not display correctly at low

resolutions will need manual intervention.

Manual and automatic hinting cannot complement each other

inside the same glyph. Any manually hinted glyph is excluded

from the autohinting process. Thus, when adding hints manually,

the glyph must be hinted fully by hand.

There are two types of glyph-level hints, stem hints and ghost

hints. Stem hints describe a vertical or a horizontal stem or

stem-like feature of a glyph, like a serif or a crossbar. Ghost hints

mark the top and bottom edges when a horizontal stem hint

cannot be applied.

In combination with alignment zones, horizontal ghost and

stem hints are important for the vertical alignment at the vertical

font metrics, like the x-height or the ascender. At low resolutions,

the rasterizer will try to vertically align the edges of all hinted

horizontal stems that reach into an alignment zone. The

horizontal hints must have their Y coordinates in common with

the nodes that are supposed to align. A single hint will do for all

nodes it touches at its height.

Stem hints can overlap each other, for example, the vertical

stem hints in the figure eight. PostScript hinting does not allow

overlapping of hints. So, in cases like this, Glyphs will

automatically insert pieces of information called hint

PostScript Hinting Glyphs 3 Handbook, October 2021 160

replacement, which turns hints on or off for different parts of the

glyph outline. This handles issues related to overlapping hints.

In a Multiple Master setup, only hints in the main master will

be considered. In this case, make sure all manually set hints are

linked to nodes on the outline (see section 11.3.1, ‘Stem Hints’,

p. 161). See section 11.3.3, ‘Hinting Multiple Masters’ (p. 163)

for details.

In Edit View, choose Autohint from the context menu to get a

good start. This way, glyph-level hints will be inserted like the

autohinter would have done it when the font is exported. Edit

these hints as described in the following sections. Remember

that a glyph is not automatically hinted at export if it contains

manual hints so that no additional hints will be added at export.

11.3.1 Stem Hints

Add a stem hint to a glyph by choosing Add Horizontal Hint or

Add Vertical Hint from the context menu. A gray bar with a

number badge will appear. The two numbers indicate the

origin and size of the hint.

Adding a hint while two nodes are selected will link the hint to

these nodes. Adding linked hints this way even works on multiple

node pairs at once, as long as each pair is on a separate outline.

For best results, always link hints to extremum nodes (see

section 4.2.14, ‘Extremes & Inflections’, p. 31).

Positioning of vertical stem

hints (green) and horizontal

stem hints (yellow).

Select a hint by clicking its gray number badge. Shift-click to

select multiple hints. Edit the value of the selected hint in the

Info box (View → Show Info, Cmd-Shift-I). Press Tab to select the

next hint, or Shift-Tab to go to the previous one.

PostScript Hinting Glyphs 3 Handbook, October 2021 161

Edit a hint graphically by dragging the blue marks at the edges of

the hint. The blue circle indicates the hint origin, while the

triangle shows the size and orientation of the hint. When one

of the markers is dragged onto a node, Glyphs will link the hint to

the position of the node. Moving the node will also adapt the

hint. Delete the selected hints by pressing the Delete key.

In the exported OTF file, all stem hints must have a width greater

than zero. Glyphs will automatically correct hint directions at

export to turn all stem hints positive.

11.3.2 Ghost Hints

Use ghost hints to vertically align the top or bottom of a glyph

when horizontal stem hints are not applicable. For instance,

consider a sans-serif uppercase I. The top needs to align with the

cap height zone, the bottom with the baseline zone. In a serif I,

horizontal hints would apply to the serifs, but the sans-serif letter

lacks the horizontal features necessary for a horizontal hint. In

this case, put a top ghost hint on the top of the I and a bottom

ghost hint at the bottom of the I. Similar situations occur on the

top of a sans-serif L and at the bottom of a sans-serif P:

PostScript Hinting Glyphs 3 Handbook, October 2021 162

Positioning of ghost hints

(blue) alongside regular stem

hints. The ghost hints work

where no horizontal hints can

be applied.

Create a ghost hint by Control-clicking or right-clicking a single

node and choosing Add Horizontal Hint from the context menu.

Turn an existing hint into a ghost hint by Control-clicking or

right-clicking the coordinate badge of a hint and choosing Make

Ghost Hint.

The badge of a ghost hint only displays the position and its

orientation. An upward arrow ↑ a top ghost hint; a downward

arrow ↓ indicates a bottom ghost hint. Attach it to a point by

dragging the blue circle onto a node. Set the vertical orientation

of a ghost hint by selecting it and clicking the upward or

downward icon in the Info box (View → Show Info,

Cmd-Shift-I).

11.3.3 Hinting Multiple Masters

PostScript hints, like TrueType hints, need to be defined for only

the main master. By default, that is the first master in the masters

list. Set the ‘Get Hints From Master’ custom parameter in File →
Font Info… → Font (Cmd-I) to mark a different master as the main

master. Provided the hints are linked to nodes on the outline and

the paths are compatible, they will be transferred to the

corresponding nodes in compatible masters at interpolation time.

Manual hints in other masters will be ignored unless there are

no hints in the main master. When using Alternate (see p. 194) or

Intermediate layers (see p. 192), insert hints in the layer that

replaces the master layer carrying manual hints.

PostScript Hinting Glyphs 3 Handbook, October 2021 163

12 TrueType Hinting

TrueType (TT) hinting optimizes the display of TrueType fonts at

low screen resolutions. PostScript/CFF flavor OpenType fonts use

a different hinting method; see chapter 11, ‘PostScript Hinting’

(p. 155) for details.

TrueType fonts employ quadratic splines. These are different

from the PostScript-style cubic splines that Glyphs uses. When

exporting to TrueType, all paths are converted to TrueType-style

outlines on the fly, including all manually set hinting instructions.

Glyph-level TT hints, like PostScript hints, need to be defined

for only the main master. By default, that is the first master in the

masters list. Set the ‘Get Hints From Master’ custom parameter in

File → Font Info… → Font (Cmd-I) to mark a different master as

the main master.

12.1 AUTOHINTING

The technical details of TT hinting are too complex to mix

manual and automatic hints. Therefore, checking the Autohint

option when exporting a TrueType flavor font will ignore any

manual TT hints in the Glyphs file:

Glyphs 3 Handbook, October 2021 164

Glyphs uses TTF Autohint for autohinting TrueType fonts.

For information on

TTF Autohint, refer to the

official website.¹

TTF Autohint can be configured in File → Font Info… → Export
(Cmd-I) with the ‘TTFAutohint options’ and ‘TTFAutohint control

instructions’ custom parameters. See section 12.3.5, ‘Show Point

Indexes’ (p. 172) for details on how to get the point indexes

needed for the control instructions.

If the Autohint export option is not checked, Glyphs includes

the manual TT hinting instructions in the exported font.

Automatic hinting can also be used as a starting point for manual

hinting; see section 12.4, ‘Instructions’ (p. 173) for details.

12.2 FONT-LEVEL HINTS

TrueType hinting uses standard stem values and TT zones on each

master. Glyphs uses these font-level hints to replicate the

glyph-level hints (see p. 169) from the main master to all

other masters.

12.2.1 TrueType Zones

Zones help unify the vertical alignment of shapes throughout the

font. When outlines are grid-fitted onto the screen pixels, vertical

shape extrema that live in the same zone will be rounded to the

same height, typically a pixel edge. Place the zones at vertical

metrics such as the baseline, descender, ascender, shoulder

height, figure height, nabira height, cap height, rekha height,

small caps height, or whatever else makes sense for the design.

A typical TrueType zones

setup: top zones with positive

sizes at ascender, cap height

and x-height; bottom zones

with negative sizes at baseline

and descender.

By default, TT hinting uses the main alignment zones (see p. 108)

defined in File → Font Info… →Masters →Metrics. Set up zones

specific to TT hinting by adding the ‘TTFZones’ custom

parameter in File → Font Info… →Masters:

1 freetype.org/ttfautohint

TrueType Hinting Glyphs 3 Handbook, October 2021 165

https://freetype.org/ttfautohint

If the font already contains PostScript hinting zones, choose Get

PS zones from the actions menu at the bottom left of the

window to import them as TT zones. Add additional zones with

the plus button and remove any selected zone with the

minus button. A font can have any number of TT zones.

Zones have the following properties:

Name The name identifies a zone in the list. It can be arbitrary

text, and each name must be unique. The ‘xHeight’ name is

special: it is used for the x-height zone, which is treated

differently in grid-fitting. A zone with that name has a higher

probability than other zones of rounding up at small sizes. Names

are shown in the Info box when using the TT Instructor tool and a

Snap hint is selected.

Position The position determines the emplacement of the flat

edge of the zone. The flat edge is the offset from the baseline

from which the zone is extending. Negative positions are placed

below the baseline.

Size The size defines the value of the flattening zone during the

overshoot suppression. A top zone has a positive size; a bottom

zone has a negative size. Top zones are meant for the top vertical

extremes of shapes, like the x-height, shoulder height, cap height,

or nabira height. Bottom zones are meant for catching the

bottom ends of shapes, like the baseline, the descender, or the

bottoms of small figures such as numerators, inferiors, and

superiors.

Ensure that the area defined by the position and the size

TrueType Hinting Glyphs 3 Handbook, October 2021 166

encompasses all overshoots that are supposed to be flattened to

the zone position by the rasterizer. For instance, at the x-height,

put the Position to the height of the lowercase x, and make sure

the Size is large enough to catch all overshoots, like in the

lowercase o. This works similarly to PostScript alignment zones

(see p. 157).

Alignment Link a zone to another zone with the Align option.

If a zone is aligned to another, the distance between the zone

positions is rounded and applied to the zone.PPM (pixels per em) is a font

size measurement. See

section 12.3.2, ‘Pixel Size’

(p. 171) for details.

This will result in

more consistent transitions from one PPM size to the next. Use

this for zones that are very close to each other, perhaps even

overlapping, and where it may be problematic if the zones

diverge too far at low-resolution pixel renderings. Aligned zones

are displayed at the same height if their distance is less than half

a pixel, one pixel apart if their distance is half a pixel, and so on.

Deltas (This property only applies to the main master.) Click

the delta button to fine-tune a zone at specific PPM sizes. A

table of buttons will be shown. The columns of the table are the

masters of the font, and the rows are PPM sizes. Click a button to

switch between rounding up , down , or no

rounding . The delta icon in the zones list is filled with

the accent color if any button is set to rounding up or down.

Rounding is helpful if a zone is one pixel too low or too high at

a given PPM size. If it is too low, round it up; if it is too high,

round it down. Use the Hinting Preview (see p. 172) to check for

any zones that need to be rounded up or down.

Filter (This property only applies to the main master.) Click the

globe button to limit the zone to a subset of glyphs. The

subset is defined like a smart filter. See section 7.5.4, ‘Smart

Filters’ (p. 92) for details. The globe icon in the stems list is

filled with the accent color if any filters are set.

TrueType Hinting Glyphs 3 Handbook, October 2021 167

12.2.2 TrueType Stems

Stems help unify the displayed size of stroke thicknesses at low

resolutions. By default, TrueType hinting uses the standard stems

of a master (see p. 109). Define stems specifically for TT hinting

by adding the ‘TTFStems’ custom parameter in File → Font Info… →
Masters. Click the value field of the parameter to edit the stems:

If the font already contains PostScript stems, choose Get PS

stems from the actions menu to import them as TT stems.

Add additional stems with the plus button and remove a

selected stem with the minus button. The following stem

properties can be edited:

Orientation A hint is oriented vertically (measured top to

bottom) or horizontally (measured left to right). Click the

double arrow icon to switch between the two orientations.

Note that the orientation of a hint refers to the thickness of a

stem, not its length. A vertical hint spans the thickness of a

horizontal stem. A horizontal hint spans the thickness of a

vertical stem.

Name The name labels the stem. It can be arbitrary text, but it

is a good idea to use descriptive names.

Size The average stem thickness. In screen rendering,

similarly-sized stems will be unified and displayed with the same

number of pixels.

Deltas (This property only applies to the main master.) Click

the delta button to fine-tune a stem at specific PPM sizes. This

property works like the Deltas of TT zones (see p. 167). Note that

TrueType Hinting Glyphs 3 Handbook, October 2021 168

stem deltas are only applied for ClearType-style rendering modes

(also referred to as Windows GDI).

Filter (This property only applies to the main master.) Click the

globe button to limit the zone to a subset of glyphs. This

property works like the Filter of TT zones (see p. 167).

12.2.3 TrueType BlueFuzz

Use the ‘TTFBlueFuzz’ custom parameter to extend all TT zones

by a certain amount. The specified amount will be added both

above and below to each zone. It defaults to 1 unit.

The parameter is helpful for testing stem values or for fixing

imprecisions in interpolation: Even if the drawings end up nicely

in the zones in all masters, they may still drop out of them in

interpolated instances. Such imprecisions can occur due to

rounding errors. Test the font using the Hinting Preview (see

p. 172) to see if the zones work in all instances, and if not, increase

the ‘TTFBlueFuzz’.

Add the parameter in File → Font Info… → Font, Masters, or

Exports. Adding it to the Font tab applies it to all instances

equally. If the parameter is instead added to the masters, it will be

interpolated at export. Add it to a single instance in Exports to

overwrite the masters and font settings.

12.3 GLYPH-LEVEL HINTS

Add glyph-level hints with the TrueType Instructor tool

(shortcut I). Note that the TrueType Instructor tool uses shortcuts

without modifier keys, which are usually reserved for tool

switching. Therefore, pressing A will not switch to the Annotation

tool , but instead, it adds a Snap instruction. Use the toolbar at

the top of the window to switch tools.

TrueType Hinting Glyphs 3 Handbook, October 2021 169

12.3.1 Hinting Outlines

A typical TT hinting setup.

Blue and red outlines are

shown in the background. In

color, the hinting instructions

overlapping the outlines are

described in section 12.4,

‘Instructions’ (p. 173).

In the TrueType Instructor tool, three outlines are shown. The

outline of the current master is black. The nodes and handles of

this outline can be selected. Nodes are shown as gray discs

instead of green circles and blue squares. Extra nodes (see

p. 139) are also shown, regardless of the View → Show Nodes →
Extra Nodes setting.

The blue outline shows the outline of the current instance

before TT hinting is applied. Change the current instance by

choosing from the menu next to the eye icon located at the

bottom left of Edit View. Click the eye icon if the instances menu

does not appear to the right.

If the selected instance corresponds to the current master, no

blue outline is shown. For example, when both the Regular

master and the Regular instance are currently selected, the black

and blue outlines overlap and only the black outline is shown.

The red outline shows the current instance after TT hinting

and grid-fitting are applied according to the current rendering

intent (Grayscale, ClearType, or DirectWrite) and the currently

selected pixel size. The outline is drawn with code from

Microsoft and is the exact outline distortion used in Windows. It

is not shown if the glyph has no TT hints.

Note that the pixel preview in the background is only an

approximate example. Additional filtering happens between the

TrueType Hinting Glyphs 3 Handbook, October 2021 170

red outline and the pixels appearing on screen. This filtering is

subject to so many customizations (gammas, color modes,

transparencies, …) that an exact pixel image cannot be predicted.

Toggle the display of the blue and red outlines with Show Pixel

Preview from the context menu of Edit View.

12.3.2 Pixel Size

With the TrueType Instructor tool active, the Info box has a pixel

size field. This field contains the pixels per em value (PPM) of the

pixel image preview. The PPM is the true pixel size of the font.

For example, consider a font with 1000 UPM and a pixel size of

12 PPM. Then, one pixel is equivalent to 1000 ÷ 12 ≈ 83 font units.

Change the pixel size by entering a new value or use the stepper

buttons to increase or decrease the size. With the pixel size field

active, press the arrow keys Up and Down to change the value.

When the field is not active, press the Period (.) or Plus (+) key to

increase the size and the Comma (,) or Minus (-) keys to

decrease it.

12.3.3 Hint Direction

The current hinting direction is controlled by the wavy arrow

button in the Info box. Click the button to toggle between

vertical and horizontal hinting. Pressing the X key also

toggles between the two modes. Vertical hints are used with

horizontal stems and vice versa (see section 12.2.2,

‘Orientation’, p. 168).

The hints of the other direction are shown dimmed and

grayed-out in the background for reference. They cannot

be edited.

12.3.4 Hint Order

Hints are applied in chronological order. The order is significant

because hints build on top of each other. When a hint is attached

to a point on the outline, the point executes the movement

implied by the hint and becomes a touched point.

After all hints have been applied, the positions of all remaining

untouched points are interpolated between the touched points

TrueType Hinting Glyphs 3 Handbook, October 2021 171

nearest in the point index order. This is sometimes referred to as

IUP, or Interpolate Untouched Points instruction.

12.3.5 Show Point Indexes

Choose Show Point Indexes from the Edit View context menu to

label all on-curve nodes with their point index (or ‘point ID’).

These numbers are needed for the ‘TTFAutohint control

instructions’ custom parameter (see section 12.1,

‘Autohinting’, p. 164).

12.3.6 Hinting Preview

With the TrueType Instructor tool active, the Preview Area (see

p. 56) moves to the right side of Edit View and shows a list (or

‘waterfall’) of the glyphs in Edit View set in the currently

selected instance.

The list displays a preview of the hinted glyphs at each size

from 8 PPM to 80 PPM. View different preview sizes by dragging

the list with the mouse cursor up and down. This preview is also

available in the Preview Panel (Window → Preview Panel).

The preview can be displayed at three scales: no scaling (1×),

2×, and 4×. Control-click or right-click anywhere in Edit View

and choose one of these scaling modes from the context menu.

12.3.7 Web Preview

Choose Show Preview Address… from the Edit View context

menu to start a web server previewing the font similarly to the

built-in Hinting Preview. Glyphs will present a dialog window

with a Web address. Click Copy to copy the address.

Open the address in a web browser to see the preview page. The

Mac does not use TT hinting, so open the page on a virtualized

TrueType Hinting Glyphs 3 Handbook, October 2021 172

Windows running on the Mac or another device connected to the

same local network.

12.4 INSTRUCTIONS

Add TrueType instructions by selecting nodes and choosing one

of the available instruction types from the context menu. Click

and drag to reposition instructions.

Choose Autohint from the context menu to add some

instructions automatically. This action will add Snap and Stem

hints, but not Shift, Interpolate, or Delta hints. The result can be

useful as a starting point for manual TT hinting. Some glyphs

cannot be autohinted. In that case, the error message ‘There was

a problem compiling TrueType instructions’ appears. Autohint

the current glyph by pressing Cmd-Ctrl-Opt-Shift-I (configure

the shortcut in the Commands section in the app preferences, see

p. 20). This shortcut also works when multiple glyphs are selected

in Edit View.

Remove all glyph-level hints from the current glyph by

choosing Remove Hints from the context menu.

12.4.1 Snap (A)

Snap instructions (shortcut A) round the position of

previously untouched points to the nearest pixel edge. Apply a

Snap instruction by selecting one or more untouched points and

pressing A or selecting Snap Point from the context menu.

Select a Snap instruction by clicking its purple badge. The

Info box (View → Show Info, Cmd-Shift-I) shows configuration

options for the selected instructions. From the pop-up menu

located at the top of the Info box, choose one of the

following options:

Auto: In vertical mode, the point will snap onto the pixel edge

the zone is rounding to if it is inside a zone. Configure the zone

rounding with the ‘TTFZones’ custom parameter. Auto is typically

the best option.

No Zone: Tells the instruction to ignore zones altogether. In that

case, it will only look for the nearest pixel edge.

TrueType Hinting Glyphs 3 Handbook, October 2021 173

The other options are the named zones (see section 12.2.1,

‘TrueType Zones’, p. 165). Choosing a zone will keep the node at a

constant distance to the selected zone and ensure that the

snapped node will not fall on the other side of the zone. Note

that these zone options are not intended for snapping a node to a

zone. Instead, it works similarly to the alignment of one zone with

another zone in the ‘TTFZones’ custom parameter (see p. 165).

The icon buttons on the bottom of the Info box indicate the

rounding that the instruction triggers:

Round (default) rounds the point to the nearest pixel edge.

Round up rounds the point to the nearest pixel edge above (in

vertical mode) or right (in horizontal mode).

Round down rounds the point to the nearest pixel edge below

(in vertical mode) or left (in horizontal mode).

No rounding keeps the point at its original position. Useful for

suppressing effects of IUP.

Round only in GDI ClearType works like Round, but only in

the ClearType rendering intent. Useful for antialiasing in the

Grayscale and DirectWrite intents, while ClearType has to round

to the full pixel. This mode is only effective when hinting

horizontal stems because GDI ClearType has no vertical

oversampling.

12.4.2 Stem (S)

Stem instructions (shortcut S) round the positions of

either two previously untouched points or one touched and one

untouched point to a distance determined by the TT stem. A

Stem hint has an originating point and a target point (indicated

by the arrowhead). The target point is moved to follow the

distortion of the originating point. Stem hints can be added to

TrueType Hinting Glyphs 3 Handbook, October 2021 174

multiple point pairs at the same time, provided an even number

of points is selected. Flip the origin and target points by choosing

Reverse from the context menu on the Stem hint.

If a Stem hint start in a zone, it will automatically snap the

originating point in the zone. A Snap instruction is therefore not

needed for the originating node.

Select a Stem hint by clicking its sky blue badge.

Configure the selected Stem hint in its Info box. From the pop-up

menu located at the top of the Info box, choose one of the

following options:

Auto: The hint will use the closest stem as defined in the

‘TTFStems’ parameter. This is the best mode, provided the stems

are clearly distinct.

No Stem: The target points are not snapped to the grid; only

their distance to the originating node is kept. This means that the

target point is moved only if the originating point is moved as

well. This is the best mode for higher shape fidelity in

medium-range pixel sizes (not too small) or if the distortions in

the resulting rendering environment are otherwise too important.

The other options are the named stems (see p. 168). Select one of

these options only if the auto mode would give the wrong results.

The icon buttons on the bottom of the Info box indicate the

rounding that the instruction triggers:

Round rounds the target point to the nearest pixel edge.

Round up rounds the stem size up. This will snap the target

point to the pixel edge that is further away from the originating

point. If the Stem hint is pointing downwards, that will be below.

Round down rounds the stem size down. This will snap the

target point to the pixel edge that is closer to the originating

point. If the Stem hint is pointing downwards, that will be above.

No rounding (default) does not round the stem to any pixel

edge but will still round its size to the oversampling edges

provided by the current rendering intent.

Round only in GDI ClearType works like the Round mode, but

only for the GDI ClearType rendering intent. If a stem is not

TrueType Hinting Glyphs 3 Handbook, October 2021 175

adjacent to a zone, this mode can help keep at least one edge of

the stem aligned with the closest pixel boundary. This is useful

for the middle bars in E and e, and best if combined with an

Interpolate instruction (see p. 179):

The stem widths taken from the ‘TTFStems’ parameter are

rounded according to the oversampling of the respective

rendering intent. Stems should not be rounded (with the default

No rounding mode) not to overwrite that. Having stems that

are not rounded to full pixel edges means that at least one side of

the stem will get a grey border. The resulting rendering is a little

less sharp but much better preserves the details of the design. It

also produces fewer problems with distorted outlines, for

example, fewer collapsed counters.

If there are three horizontal stems, select all three Stem hints

by consecutively Shift-clicking them, then choose Make Triple

Hint from the context menu. The Stem hints will turn

purple , indicating they are connected and will try to

preserve at least one-pixel distance even in the worst of

circumstances:

TrueType Hinting Glyphs 3 Handbook, October 2021 176

12.4.3 Shift (F)

Shift instructions (shortcut F) transfer the movement

of a touched (originating) point to an untouched (target) point.

This shifts the target point the same way the originating point is

shifted. Use Shift instructions to make sure that two parts of a

glyph implement the same distortion.

Apply a Shift instruction by selecting a touched and an

untouched point, and press F or choose Shift Points from the

context menu. Multiple Shift instructions with the same

originating point can be added simultaneously, provided only one

of the selected points is touched (originating point), and all others

are untouched (target points).

Select a Shift hint by clicking its dark blue badge. The icon

buttons in the Info box indicate the rounding that the

instruction triggers:

Round rounds the target point to the nearest pixel edge.

TrueType Hinting Glyphs 3 Handbook, October 2021 177

Round up rounds the target point to the nearest pixel

edge above.

Round down rounds the target point to the nearest pixel

edge below.

No rounding (default) keeps the transferred movement exactly

as it is without any additional rounding. This is typically the best

mode for Shift instructions.

Round only in GDI ClearType works like Round, but only for

GDI ClearType.

For example, consider the two legs of a Latin lowercase sans-serif

n. The left leg should get snapped in the baseline zone. But, after

adding a Stem hint for the shoulder between the two legs, the

right leg is out of sync with the left leg.

This happens because, along the line of the path, the effect of

the Snap instruction in the lower left is interrupted by the Stem

instruction on the top. Therefore, for the right leg, the ensuing

IUP (interpolation of untouched points) can only extrapolate the

distortion caused by the Stem instruction, not the Snap

instruction. Effectively, the Snap instruction is confined to the left

leg. Mitigate this by adding a Shift instruction from the touched

(snapped) point on the left leg to one of the points on the

right leg:

The Shift instruction duplicates the movement of the left leg to

the right leg, making the target point a touched point. This way,

the right leg will always perform the same movement as the left

leg. The lowercase Latin m may use multiple Shift instructions:

TrueType Hinting Glyphs 3 Handbook, October 2021 178

12.4.4 Interpolate (G)

Interpolate instructions (shortcut G) keep a previously

untouched point at the same relative position to two touched

points as in the original uninstructed outline. Apply an

Interpolate instruction by selecting two touched points and a

third, untouched point. Then press the G key or choose

Interpolate from the context menu.

The main intention of Interpolate hints is to remedy unwanted

side effects of IUP. For example, use an Interpolate instruction to

keep a middle stem at the same relative distance from the

(already touched) outer stems, as in this lowercase e:

TrueType Hinting Glyphs 3 Handbook, October 2021 179

Select a Shift hint by clicking its green badge. The icon

buttons in the Info box indicate the rounding that the

instruction triggers:

Round snaps the target point to the nearest pixel edge. Choose

this mode when adding a Stem hint on top of the target point.

Round up snaps the target point to the next pixel edge above.

Round down snaps the target point to the next pixel

edge below.

No rounding (default) keeps the interpolated position and

does not round it. This is typically the best mode for Interpolate

instructions.

Round only in GDI ClearType will snap to the nearest pixel

edge for the GDI ClearType rendering intent; the others should

remain unaffected.

12.4.5 Delta (E)

Delta instructions (shortcut E) move a point up or down by

exactly one pixel, but only in a specific static instance and a

specific PPM size. Delta hints are intended as final pixel

corrections after all other hints have been applied. Add a Delta

hint by selecting any number of points and pressing E or choosing

Delta from the context menu. Select one or more Delta hints,

click the Delta icon in the Info box, and configure them like the

deltas of a TT zone. See section 12.2.1, ‘Deltas’ (p. 167) for details.

Delta hints should be used sparsely, if at all, and should be

added last, after all other hints. Delta hints are only available for

vertical hinting and are ignored in variable fonts.

12.4.6 Points in Overlapping Intersections

Instructions may be placed on any node shown in the TrueType

Instructor tool. However, path intersections are handled

TrueType Hinting Glyphs 3 Handbook, October 2021 180

separately. When a font is exported with the Remove Overlaps

option selected, overlapping intersections are reduced to a single

point. Glyphs will move any hints on points that are removed as

part of the overlap removal to the nearest resulting intersection

point. Thus, the following two hints are equivalent in

non-variable fonts:

In variable fonts, overlaps are not removed. Hints added to extra

nodes, such as the right hint in the image above, are ignored.

When exporting variable fonts, only add hints to normal nodes,

like the left hint in the image above.

12.5 ADVANCED TRUETYPE HINTING

Use the following custom parameters to further configure the

TT hinting of the exported font files.

TTFOvershootSuppressionBelowPPM Add this parameter in

File → Font Info… → Font (Cmd-I). Set it to the pixel size below

which overshoots are collapsed to the flat edge of their zone. The

flat edge is the position of a zone as configured in the ‘TTFZones’

parameter (see p. 166).

TTZoneRoundingThreshold Add this parameter in either the

Font or Exports tab in the Font Info window (Cmd-I). The Font

value is used for all instances where the parameter is not set. This

value controls the likelihood of a positive zone being pushed up a

pixel. It takes a small decimal number, typically something

around 0.1 or 0.2. The value is added to any positive zone

position before rounding and added twice to the x-height zone

(the one named ‘xHeight’ in the TrueType zones, see p. 166). Its

default value is 0.09375.

For example: At a certain font size, the small caps zone ends

up at 6.45 px, and the x-height at 5.25 px. Without any change,

the small caps zone rounds and snaps to a height of 6 pixels,

while the x-height ends up with 5 pixels. But when setting the

TrueType Hinting Glyphs 3 Handbook, October 2021 181

rounding threshold to 0.2, the small caps height ends up at

6.45 + 0.2 = 6.65 ≈ 7 pixels, and the x-height at 5.25 + 2 × 0.2 =

5.65 ≈ 6 pixels.

TTMinimumDistance Add this parameter in File → Font
Info… → Exports (Cmd-I). The default value is 0.25, meaning that

any hinted stem will be drawn with a minimum length of a

quarter pixel, no matter which PPM size if it has a stem hint

applied. If the default value does not fit the design, add this

parameter with a custom minimum distance (in pixels).

See the TrueType Reference

Manual² for details.

Control Value Program Three custom parameters are added to

the masters when opening a hinted TrueType font: ‘CVT Table’,

‘prep Table Assembly’, and ‘fpgm Table Assembly’. These

parameters contain the assembly code for the existing TT hinting

and are rarely edited manually. Instead, they are used not to lose

the existing hinting instructions on export. They correspond to

the cvt, prep, and fpgm tables in the font.

gasp Table Add this parameter in either the Font or Exports tab

in the Font Info window (Cmd-I). The Font value is used for all

instances where the parameter is not set. This parameter

configures the grid-fitting and scan-conversion procedure for

TrueType fonts. It controls the two PPM thresholds at which the

recommended on-screen rendering behavior changes. The gasp

table contains rendering recommendations for both a traditional

Grayscale and a ClearType subpixel renderer. However, keep in

mind that a renderer may ignore the data stored therein. The

default threshold sizes are 8 and 20 PPM. Because there are two

thresholds, three ranges can be differentiated:

Source for quoted parts: Now

Read this: The Microsoft

Cleartype Font Collection,

Microsoft 2004, p. 14.

No Hinting & Symmetric: Until the first threshold size, no

grid-fitting is applied, and text is rendered with antialiasing

wherever possible. ‘At very small sizes, the best appearance on

grayscale devices can usually be achieved by rendering the

glyphs in grayscale without using hints.’

Hinting & Asymmetric: Between the two threshold sizes, the

renderer is recommended to apply grid-fitting and suppress

grayscale. ‘At intermediate sizes, hinting and monochrome

rendering will usually produce the best appearance.’ In ClearType,

the matter is handled asymmetrically: vertical grid-fitting is

applied, while horizontally, subpixel rendering is used.

2 developer.apple.com/fonts/TrueType-Reference-Manual/RM03/Chap3.html

TrueType Hinting Glyphs 3 Handbook, October 2021 182

https://developer.apple.com/fonts/TrueType-Reference-Manual/RM03/Chap3.html

Hinting & Symmetric: Beyond the thresholds, the rasterizer is

instructed to apply grid-fitting and render the shapes in grayscale.

‘At large sizes, the combination of hinting and grayscale rendering

will typically produce the best appearance.’ The ClearType

rasterizer is instructed to apply symmetric smoothing. This uses

antialiasing in the Y direction in addition to horizontal subpixel

rendering. ‘At display sizes on screen, […] this new improvement

of the Windows font renderer produces smoother and

cleaner-looking type.’

TrueType Hinting Glyphs 3 Handbook, October 2021 183

13 Interpolation

The glyph outlines drawn in Edit View belong to a font master.

Initially, a Glyphs file contains a single master named ‘Regular’. If

a Glyphs file contains additional masters (for example, a Thin and

Bold master), this is referred to as a Multiple Masters setup.

Working with Multiple Masters allows Glyphs to export font

instances not just for each master but also between masters.

A small number of masters

can result in a large number of

interpolated instances. In this

example, two masters Thin

and Bold are used to produce

a total of six instances along a

Weight axis.

BoldSemiboldMediumRegularLightThin

Thin Master Bold Master

An interpolation axis describes the aspect of the glyph design

that changes between masters. The most common axes are the

Weight (from light to bold) and the Width (from condensed to

extended), but there are many more possible interpolation axes.

A Multiple Master setup can have one or more axes. While a

single axis can be thought of as a line along which the design

varies, two axes create a two-dimensional space in which every

point is a possible font instance. This space is referred to as the

design space, which may also have three or more dimensions.

Two perspectives on the

three-axes design space of

ABC Arizona, the typeface in

which this handbook is set.

weight

italic angle
serif

Glyphs 3 Handbook, October 2021 184

13.1 INTERPOLATION APPLICATIONS

Interpolation axes have two use cases: static instances and

variable fonts.

A static instance is a font file at a specific point in the design

space. For example, consider a Glyphs file with a Weight axis

spanning from a Thin master to a Bold master. Then, a Thin

instance is located at one end of the axis, a Bold instance is

located at the other end, and a Regular instance is located

somewhere in the middle of the axis.

If the Glyphs file has multiple axes, then multiple axis

coordinates can be configured for each instance. Consider a

Glyphs file with a Weight and Width axis. In that case, there may

be Thin, Thin Condensed, Thin Expanded, Regular Narrow,

Semibold Condensed, and Bold Expanded instances.

Glyphs can also extrapolate static instances. An extrapolated

instance is located outside the coordinates defined by the

masters, for example, an Extra Bold instance that is bolder than

the Bold master. In practice, extrapolation is difficult to control,

so most font projects only make use of interpolation.

Variable fonts are font files containing information about all

masters and interpolation axes, allowing the font user to pick

custom locations in the design space.

For example, for a variable font containing a Weight axis

(ranging 300–900) and a Width axis (50–140), a font user might

pick ‘SomeFont Weight=600Width=70’ instead of ‘SomeFont

Semibold Narrow’. This method allows picking any configuration

of weight and width without the font vendor preparing static

instances for every possible combination. Variable fonts may also

include static instances, offering a predefined set of axis

configurations for convenient access.

Interpolation Glyphs 3 Handbook, October 2021 185

13.2 SETTING UP AXES

Define interpolation axes in File → Font Info… → Font → Axes. Click

the plus button next to the Axes heading to add a new axis. An

axis has a name, a four-character tag, and a hidden-checkbox.

Click the disclosure ! button to pick one of the predefined

axes. Choosing a predefined axis also sets its four-character tag

field with the respective value. The predefined axes are a

combination of the registered OpenType design-variation axes¹

and axes proposed for inclusion in the registry.² Otherwise,

define a custom axis (also referred to as a private axis) by setting

an arbitrary axis name and a custom four-letter tag. The tag of a

private axis should use four capital letters (A–Z) as not to collide

with future registered axes. For instance, a custom Swash Length

axis might use the tag ‘SWLN’.

Check the Hidden checkbox to hide an axis in user interfaces.

If set, this signals to applications using the font that they should

not display controls (such as a slider) for this axis. Hide axes if

they are applicable only in specialized software. Applications may

or may not respect this option. In most cases, this checkbox

should be left unchecked.

13.3 SETTING UP MASTERS

Interpolation requires at least two masters. Add masters in File →
Font Info… →Masters. Click the plus button located in the

bottom left of the window to add a new master. See section 8.2.1,

‘Managing Masters’ (p. 106) for details.Tip: Give each master a

descriptive name such as

Light, Regular Condensed, or

Bold Caption, and pick a

representative master icon

(see p. 107).
1 docs.microsoft.com/typography/opentype/spec/dvaraxisreg

2 github.com/microsoft/OpenTypeDesignVariationAxisTags

Interpolation Glyphs 3 Handbook, October 2021 186

https://docs.microsoft.com/typography/opentype/spec/dvaraxisreg
https://github.com/microsoft/OpenTypeDesignVariationAxisTags
https://docs.microsoft.com/typography/opentype/spec/dvaraxisreg
https://github.com/microsoft/OpenTypeDesignVariationAxisTags

13.3.1 Axes Coordinates

The Axes Coordinates of a master indicate its position in the

design space. Add masters and set their axis coordinates such

that the design space is covered by the masters. For a single

Weight axis, two masters suffice:

Icon Master Name Weight

Light 300

Bold 700

Adding a third master in the middle (for example, Regular at 400)

allows for finer control over the interpolation.

The values for the Axes Coordinates fields can be chosen

freely. For the Weight axis, the median vertical stem width can be

used as axis coordinate values. For instance, a Light master with a

stem width of 45 might use that as its Weight coordinate, while a

Bold master uses its stem width of 160. A more abstract axis, such

as Serif, might use a range from 0 to 100, with no serifs at 0 and

long serifs at 100.An Italic axis does not

necessarily need to flip to

different outlines. Instead, it

may smoothly transition from

an upright to an italic angle.

Such an Italic axis may use a

larger range like 0–100.

Axes that do not smoothly transition, such as

an Italic axis where the glyphs flip to different outlines, use a

range from 0 to 1.

Add the ‘Axis Location’ custom parameter to use a different

axis range for variable fonts. This is particularly relevant to

registered axes such as Weight and Optical Size. See

section 13.10.2, ‘Axis Location’ (p. 199) for details.

Axis coordinates are spread linearly in the design space. For

variable fonts, the ‘Axis Mappings’ custom parameter can be

added for non-linear axes ranges. See section 13.10.3, ‘Axis

Mappings’ (p. 200) for details.

13.3.2 Minimal Multiple Masters Setup

A minimal Multiple Masters setup requires one origin master and

one master for each axis. The Axes Coordinates of the origin

master differ from each other master on a single axis. For

example, consider a font with a Weight and Width axis. Then, the

following minimal master setup is possible:

Icon Master Name Weight Width

Light Condensed 300 50

Light 300 80

Bold 700 80

The Light master is the origin master. Its coordinates differ from

the Light Condensed only on the Width axis and from the Bold

Interpolation Glyphs 3 Handbook, October 2021 187

only on the Weight axis. The Bold, for example, cannot be the

origin master since its coordinates differ from the Light

Condensed on both the Weight and Width axes.

See section 13.10.1, ‘Variable Font Origin’ (p. 199) for

information on choosing the origin master. The choice of an

origin master only matters to variable fonts; for static instances,

Glyphs automatically determines the origin master.

13.3.3 Elaborate Multiple Masters Setups

While a minimal Multiple Master setup already covers the entire

design space, it offers little control over the design of instances

that differ from the origin on multiple axes. For instance, the

minimal setup example in the above subsection can produce a

Bold Condensed instance, but its outlines might not be

satisfactory.

A more elaborate Multiple Masters setup would include

masters at all design space corners:

Icon Master Name Weight Width

Light Condensed 300 50

Light 300 80

Bold Condensed 700 50

Bold 700 80

Add intermediate masters as needed to fine-tune the design

along the interpolation axes. A complex Multiple Masters setup

can span across many masters:

Icon Master Name Weight Width

Light Condensed 300 50

Light 300 80

Light Extended 300 150

Regular Condensed 400 50

Regular 400 80

Regular Extended 400 150

Bold Condensed 700 50

Bold 700 80

Bold Extended 700 150

13.4 SETTING UP INSTANCES

In File → Font Info… → Exports, click the plus button located in

the bottom left of the window to add a new instance. See

section 8.3, ‘Exports’ (p. 110) for details on adding and

configuring instances.

Interpolation Glyphs 3 Handbook, October 2021 188

13.4.1 Static Instances

Static instances (→ Add Instance and Add Instance for each

Master) are exported as single font files. The Axes Coordinates of

an instance need to be set up as described in section 8.3.4, ‘Axes

Coordinates’ (p. 112). Note that the Weight Class and Width Class

fields are independent of any axis coordinates; see section 8.3.3,

‘Weight & Width’ (p. 112).

Static instances are also included in variable fonts as a set of

predefined axis configurations. This allows a font user to pick a

predefined instance from a font style menu instead of configuring

the variation axes manually. Instances that are outside the design

space (extrapolated) cannot be included in variable fonts.

Many custom parameters, including filters, are applied only to

static instances when exported as single files, not when included

in variable fonts. This is because, in a variable font, all instances

need to be compatible, which means they have compatible

outlines, the same glyphs, and the same features.

13.4.2 Variable Font Settings

A variable font setting (→ Add Variable Font Setting) controls

the export settings of a variable font. Adding multiple variable

font settings will export multiple variable fonts with different

configurations. Ensure that they have different names, so they do

not conflict on export.

Since a variable font setting operates on the entire variable

font, it can use the custom parameters that are not applied to its

instances. These include filters, removing glyphs, and adding

features. However, these custom parameters may still lead to

incompatible outlines, which is reported as an error when

exporting the variable fonts.

13.5 OUTLINE COMPATIBILITY

Glyph outlines need to be compatible for interpolation to work.

Two glyph outlines are compatible when the following attributes

are the same across all outlines:

the number of paths and the order of their nodes;

the number of anchors and their names;

the number of components and their referenced glyphs;

the order of paths and components (Filter → Shape Order).

Interpolation Glyphs 3 Handbook, October 2021 189

13.5.1 Identifying Incompatible Outlines

If the outlines of a glyph are not compatible, a red bar is shown

above its ascender line in Edit View and a red corner in

Font View. Filter for all incompatible glyphs using smart filters

(see p. 92, Glyphs includes an Incompatible masters smart filter

by default).

When using masters that are not compatible by design, such

as color fonts, disable the red incompatibility indicators by

adding the ‘Enforce Compatibility Check’ custom parameter in

File → Font Info… → Font and unchecking it.

Exporting interpolated instances or variable fonts is not

possible if there are glyphs with incompatible outlines.

13.5.2 Correcting Path Direction

Use Path → Correct Path Direction (Cmd-Shift-R) as a first

measure to fix outline incompatibilities. This command does

three things:

it analyses the path structure and, if necessary, changes the path

direction for each path;

it normalizes the start node for each path, usually by choosing

the node leftmost node at the bottom of the glyph layer;

it reorders the shapes (paths and components), usually from

bottom left to top right.

Hold down the Option key to apply the command on all

master layers of the selected glyphs (Path → Correct Path
Direction for all Masters, Cmd-Opt-Shift-R). See section 4.2.13,

‘Controlling Path Direction’ (p. 31) for more details.

13.5.3 Reordering Shapes

Choose Filter → Shape Order to show a window with the paths

and components from all layers of the current glyph. Rearrange

the shapes such that they are in the same order on all layers. See

section 6.2.1, ‘Shape Order’ (p. 68) for details.

13.5.4 Master Compatibility

View → Show Master Compatibility (Cmd-Ctrl-Opt-N) shows the

paths, components, and anchors across all masters.

Interpolation Glyphs 3 Handbook, October 2021 190

Compatibility view for three

incompatible masters: Light,

Regular, and Bold.

In this case, a node is missing

on the right of the counter of

the p (shown in violet). This

leaves a path segment with a

larger curvature angle

(highlighted in yellow) than on

the other masters. Subsequent

segments on the path are

marked as incompatible (red).

The following aspects are highlighted in this mode:

Paths and components are colored based on their shape order.

Components are additionally displayed with a checkered pattern.

For the current layer, a shape order index number is written next

to the starting node of each path and in the middle of each

component.

Diagonal lines connect starting nodes, shape centers, and

anchors across the masters. Select points to show their

connecting lines. Anchors are connected by dashed lines.

Path segments are colored either green, yellow, or red. Green

segments are compatible. Yellow segments are compatible, but

their angle differs by more than 20° between masters, indicating

that a node might be missing. Red segments are incompatible;

there is either a missing segment in other masters, or the segment

types do not match (curved segment vs. straight segment).

Fix path direction and shape order related issues as described

in section 13.5.2, ‘Correcting Path Direction’ (p. 190) and

section 13.5.3, ‘Reordering Shapes’ (p. 190). The points on the

connecting lines outside the current layer can be dragged to

points of other connecting lines to swap to fix mismatched

shapes. For path segment issues, pinpoint the incompatibility

caused by selecting nodes and observing whether they fall on the

expected spot in the other masters.

Interpolation Glyphs 3 Handbook, October 2021 191

If a path, component, or anchor does not exist on a master, its

connecting line will point to the origin at (0, 0) on that master.

Glyphs will label components and anchors with red text in cases

where these elements do not match:

The master layers of a glyph might be compatible but still

produce undesirable interpolations. This can be the case when all

shapes are in the same order but placed on different locations

across the masters. The Master Compatibility view shows such

shape-shifting glyphs with crossing diagonal lines. Interpolations

between these masters might produce the following instances:

Fix shapeshifters by reordering the shapes, either with Path →
Correct Path Direction, Filter → Shape Order, or by dragging a

point of a connecting line to the correct shape.

13.6 INTERMEDIATE LAYERS

Intermediate layers allow adjustments at a design space location

for a single glyph without adding an additional master. This helps

fix interpolation issues that occur in a single glyph. For example,

consider a two-master setup, Thin–Black, where the crossbar of

the e appears too thin in the regular weights:

Interpolation between two

masters: without Intermediate

layer (above) and with

Intermediate layer at the

regular weight (below).

Interpolation Glyphs 3 Handbook, October 2021 192

13.6.1 Intermediate Layer Setup

Firstly, select the master layer in the Layers palette most similar

to the desired Intermediate layer. Then, click the plus button

in the Layers palette to add a new layer. Control-click or

right-click the new layer and choose Intermediate from the

context menu. A number field for each axis will appear.

Enter the axis coordinates of the Intermediate, similar to how

the Axes Coordinates work in File → Font Info… →Masters. Use

the axis ranges displayed next to the fields for guidance. If a field

is left empty, then the Intermediate layer uses the axis coordinate

from the master layer to which it has been added. This is why

adding an Intermediate to the most similar master layer is helpful.

Confirm the entered values by pressing Return.

In the Layers palette, Intermediate layers are displayed as the

comma-separated axis coordinates between curly braces (for

example, {90} or {80, 120}). This is why Intermediate layers are

also referred to as brace layers.

13.6.2 Virtual Masters

Intermediate layers allow for virtual masters. A virtual master

works like a master in File → Font Info… →Masters, but it only

affects a small number of glyphs. Other glyphs do not need to be

redrawn, and kerning pairs do not need to be defined for virtual

masters. For example, an axis might control the height of

crossbars in glyphs such as A, E, F, and H. All other glyphs,

including numbers, punctuation, and symbols, are unaffected by

this axis, so it is a good candidate for a virtual master.

Add an axis as described in section 13.2, ‘Setting up Axes’

(p. 186). It can be one of the standard axes or a custom axis. The

virtual master is defined using a ‘Virtual Master’ custom

parameter in File → Font Info… → Font. Click the value of the

custom parameter and set its axis coordinates like any other

master. Confirm the dialog with OK. Note that coordinates for

the new axis must be set for the existing masters in File → Font
Info… →Masters.

With both the axis and the virtual master setup, add

Intermediate layers to the glyphs that need to be adjusted for the

virtual master. When exporting to variable fonts, only deltas for

these glyphs are stored, which keeps the font file size small.

Interpolation Glyphs 3 Handbook, October 2021 193

13.7 SWITCHING SHAPES

Some glyphs may not stay compatible as they interpolate.

Examples include the dollar sign ($) losing its stroke in the middle

in bold weights or double-story forms switching to a single-story

form at an italic angle (a → a and g → g). There are three methods

by which glyph shapes can be switched:

using Alternate layers to switch to different glyph outlines in both

static instances and variable fonts;

replacing glyphs with other glyphs at export;

substituting glyphs by other glyphs for certain regions of the

design space in variable fonts.

13.7.1 Alternate Layers

An Alternate layer is a layer that contains an alternate glyph

outline and information about where in the design space the

glyph should switch to the alternate outline.

Alternate layers are added to individual glyphs. For each

master, select the master layer in the Layers palette, click the

plus button to add a new layer, Control-click or right-click the

new layer and choose Alternate from the context menu.

After converting to an Alternate layer, number fields for the

minimum and maximum coordinates will open. These describe

the design space region in which the alternate shape should be

used. For example, consider a single Weight axis ranging from 44

to 130 where the Alternate layer should be used for a weight of

90 or greater. In that case, set the min value to 90 and leave the

max field empty.

Confirm by pressing Return. The name of the Alternate layer is

displayed in bold as comma-separated axis ranges between

square brackets (for example, [90‹wg] or [80‹wg, 25‹wd‹50]).

This is why Alternate layers are also referred to as bracket layers.

Axis Name Tag Abbr.

Italic ital it

Optical Size opsz oz

Slant slnt sl

Width wdth wd

Weight wght wg

Common axis names are abbreviated to two letters; the full axis

tag is shown for all other axes.

Modify the outlines on the Alternate layers to fit the alternate

design of the glyph. Alternate layers do not need to be

compatible with the master layers, but they do need to be

Interpolation Glyphs 3 Handbook, October 2021 194

compatible with each other. The Master Compatibility view (see

p. 190) also shows Alternate layers, but they are offset by a gap:

Master Compatibility view for

the dollar glyph with two

masters (Thin and Black), two

Intermediate layers, and three

Alternate layers. The currently

active glyph layer is both an

Intermediate layer and an

Alternate layer.

1122

33

A layer can be both an Intermediate and Alternate layer. In that

case, both the square bracket Alternate name ([…]) and the curly

brace Intermediate name ({…}) are displayed in the Layers

palette. Double-click either one to edit its settings.

A master layer can also be designated as an Alternate layer.

For that, Control-click or right-click a master layer in the Layers

palette and choose Alternate. Configure the axis range of the

master layer like a normal Alternate layer. Then, add a new layer

to the master, mark it as an Alternate layer, and leave both the

min and max fields empty. This renames the new layer to ‘[]’.

Place the alternate outline on the master layer and the normal

outline on the ‘[]’ layer. Whether the master or a backup layer is

converted to an Alternate layer does not matter to the exported

fonts; it is purely an organizational choice within Glyphs.

In variable fonts, Alternate layers are activated using a specific

OpenType feature. Set the ‘Feature for Feature Variations’ custom

parameter in File → Font Info… → Font to the four-letter feature

tag. By default, Glyphs uses ‘rlig’, but ‘rvrn’ is also a common

choice. Different features will be processed at different stages of

the text shaping process; this depends on the operating system

and application displaying the text.

13.7.2 Replacing Glyphs at Export

Glyphs can be replaced by other glyphs at export for both static

instances and variable font settings. For this, two custom

Interpolation Glyphs 3 Handbook, October 2021 195

parameters must be added in File → Font Info… → Exports. Firstly,

add the ‘Rename Glyphs’ custom parameter, click its value to edit

it, and write one glyph swap per line. A glyph swap is written as

someglyph=otherglyph. This switches the two glyphs in the

exported font. For instance, switch the dollar glyph for a

simplified dollar.alt by adding the line dollar=dollar.alt. List

all glyphs with their replacement and confirm with OK.

Add the ‘Remove Glyphs’ custom parameter to not just swap,

but replace glyphs. Click its value to edit it and list all alternative

glyphs that now, after the swap, contain the normal

glyph outlines.

13.7.3 Conditional Glyph Substitutions

Conditional substitutions allow glyphs to be replaced in variable

fonts. See section 8.4.5, ‘Conditional Feature Code’ (p. 120)

for details.

An example for the dollar → dollar.alt substitution from the

examples above may look like this:

#ifdef VARIABLE

condition 80 < wght;

sub dollar by dollar.alt;

#endif

This replaces the dollar with the dollar.alt glyph for a weight of

80 or greater.

When exporting to both variable fonts and static instances,

consider using the glyph replacement described in section 13.7.2,

‘Replacing Glyphs at Export’ (p. 195) to mimic the conditional

substitutions in static instances.

13.8 EDITING MULTIPLE MASTERS

Font masters are listed in the Layers palette. Click the /

buttons to show a layer even if it is not currently active. See

section 5.3, ‘Layers’ (p. 61) for details.

13.8.1 Select All Layers Tool

Use the Select All Layers tool (shortcut Shift-V) to edit the

paths of all visible layers at the same time. Click the /

buttons in the Layers palette to show or hide layers. Switch

between the Select and Select All Layers tool by clicking and

holding the Select icon, then choose the desired tool

Interpolation Glyphs 3 Handbook, October 2021 196

from the menu:

13.8.2 ShowAll Masters

When in Edit View, choose Edit → Show All Masters to add all

master layers of the current glyph to the Edit View tab. This

command also inserts Intermediate and Alternate layers.

13.8.3 Keep Layer Selection in Sync

Select the Edit → Keep Layer Selection in Sync option to keep the

current selection when changing masters. This option only works

when working on a compatible glyph.

13.9 WORKING WITH MULTIPLE FONTS

13.9.1 Grouping Fonts into Families

A font typically refers to a single font file, like Regular, Bold, or

Semibold Italic. In Glyphs, these font files are exported from the

instances added in File → Font Info… → Exports. In most software

applications, fonts are grouped by their family name, which is set

in File → Font Info… → Font → General → Family Name.

Instances and variable font settings can overwrite the family

name set in the Font tab with a ‘Localized Family Names’ custom

parameter. Note that the Default language is used for grouping;

other localized names are only used to display the family name

on screen.

Use style linking as described in section 8.3.5, ‘Style Linking’

(p. 113) to link the bold and italic styles. This enables the Bold

and Italic buttons and the ⌘B and ⌘I keyboard shortcuts

common in many applications.

A variable font contains a font family in a single file. While it is

technically possible to put all family members into a single

variable font, it may be desirable to split the family across

multiple variable fonts. For example, an italic variable font may

be sold separately from the regular variable font.

Interpolation Glyphs 3 Handbook, October 2021 197

Add multiple variable font settings in File → Font Info… →
Exports to export different variable fonts from a single Glyphs file

(for example, a retail version and a trial version with a reduced

glyph set). If the glyph set or OpenType features differ

significantly, consider using multiple Glyphs files for the different

variable fonts.

13.9.2 Glyphs Files, Masters, & Instances

Create a Glyphs file for each instance with File → Generate
Instances. This command reads the instances of the currently

open Glyphs file, converts them to font masters, and creates a

new Glyphs file with each of those masters.

Convert a single instance to a master by selecting the instance

in File → Font Info… → Exports and choosing Instance as Master

from the plus menu. The master will be added to the Masters

tab. Copy a master from an open Glyphs file into the currently

open file by choosing Add Other Master from the plus menu

in File → Font Info… →Masters.

13.9.3 Compare Fonts

Compare two font masters by choosing Edit → Compare Fonts…

On the top of the Compare Fonts window are controls for picking

two font files. Choose from all font files that are currently open in

Glyphs. Below the file controls are pop-up buttons for choosing a

master from the font file. The two select masters are compared in

the center of the window. Select the same font files twice to

compare different masters of the same file.

The window lists the details of the two masters in a

two-column layout, comparing font info, master metrics, glyph

outlines, and kerning pairs. These categories can be collapsed or

expanded by clicking the disclosure triangle next to the gray

headings. Click a row to select it. On the bottom of the window

are two buttons: Use Left and Use Right. With a row selected,

click one of these buttons to write the value from one side to the

other. This can help fix inconsistencies between masters and

Glyphs files.

13.10 VARIABLE FONT OPTIONS

Additional adjustments can be made to variable fonts that affect

their axes, fallback mode on legacy systems, and file size.

Interpolation Glyphs 3 Handbook, October 2021 198

13.10.1 Variable Font Origin

Variable fonts require an origin master. The outlines of this

master will be stored in the variable font file. All other masters

are only stored as deltas from the origin master.

By default, Glyphs uses the first master in File → Font Info… →
Masters as the origin master. Designate a different master as the

origin by adding the ‘Variable Font Origin’ custom parameter in

File → Font Info… → Font.
A minimal variable font setup requires at least an origin master

and one master for each variation axis. This is described in detail

in section 13.3.2, ‘Minimal Multiple Masters Setup’ (p. 187).

The origin master is used as a fallback on operating systems

and applications that do not support variable fonts. Therefore,

consider picking a regular master as the origin. Thereby, legacy

systems will show a regular font instead of a thin, bold, or italic

font. Since the regular master tents to sit in the center of the

design space, it requires more deltas to describe the other

masters. This increases the font file size compared to picking a

corner master like Light or Light Condensed. For environments

where file size is paramount (for example, webfonts), consider

picking the origin master from a design space corner.

13.10.2 Axis Location

When exporting a variable font, its design variation axes will use

the same coordinates as the axis coordinates set in Glyphs.

However, in some cases, the coordinates inside the Glyphs file

might differ from the desired axis coordinates of the variable font.

A common example is the Weight axis, which in Glyphs is often

based on steam widths, but the OpenType specification

recommends the Weight axis to use a range of 1–1000.³ Similar

recommendations exist for the Italic,⁴ Optical Size,⁵ Slant,⁶ and

Width⁷ axis.

Use different axis coordinates by adding an ‘Axis Location’

custom parameter to all masters in File → Font Info… →Masters.

Click its value to edit it and assign each axis the coordinates that

the master represents in variable fonts. Further configure the axis

coordinates of variable fonts using axis mappings.

3 docs.microsoft.com/typography/opentype/spec/dvaraxistag_wght

4 docs.microsoft.com/typography/opentype/spec/dvaraxistag_ital

5 docs.microsoft.com/typography/opentype/spec/dvaraxistag_opsz

6 docs.microsoft.com/typography/opentype/spec/dvaraxistag_slnt

7 docs.microsoft.com/typography/opentype/spec/dvaraxistag_wdth

Interpolation Glyphs 3 Handbook, October 2021 199

https://docs.microsoft.com/typography/opentype/spec/dvaraxistag_wght
https://docs.microsoft.com/typography/opentype/spec/dvaraxistag_ital
https://docs.microsoft.com/typography/opentype/spec/dvaraxistag_opsz
https://docs.microsoft.com/typography/opentype/spec/dvaraxistag_slnt
https://docs.microsoft.com/typography/opentype/spec/dvaraxistag_wdth
https://docs.microsoft.com/typography/opentype/spec/dvaraxistag_wght
https://docs.microsoft.com/typography/opentype/spec/dvaraxistag_ital
https://docs.microsoft.com/typography/opentype/spec/dvaraxistag_opsz
https://docs.microsoft.com/typography/opentype/spec/dvaraxistag_slnt
https://docs.microsoft.com/typography/opentype/spec/dvaraxistag_wdth

13.10.3 Axis Mappings

Three different axis mappings

for the same weight axis.

For variable fonts, the axis coordinate that the font user picks can

be transformed to a different axis coordinate by the font. Axis

mappings perform these transformations.

By default, variable fonts use a linear axis mapping. Linear in

this context means that each axis coordinate is mapped onto

itself and is thus unchanged. For instance, consider a Weight axis

ranging from 44 to 130. If a font user picks a weight of 95 on a

slider, then that value is mapped to 95 (it is left unchanged) and

used for interpolation:

The linear axis mapping

that is used by default.

The slider is equally

sensitive for the entire axis

range. This means that

changing the slider value

by the same amount

changes the interpolation

value by the same amount

everywhere along the axis.

44 879567 109
44

67

87

95

109

130

130 internal coordinates

ex
te
rn
al
co
or
di
na
te
s

44 95 130

Axis coordinates are mapped to other values by adding control

points to the axis mapping that deviate from the linear diagonal:

A non-linear axis mapping

with two control points.

The slider is more sensitive

on the lower end than on

the higher end. This means

that the same amount of

change on the low end of

the slider results in larger

interpolation value

changes than on

the high end.

44 8767 109
44

84

106
113
122
130

130

44 113 130

ex
te
rn
al
co
or
di
na
te
s

internal coordinates95

The internal coordinates are the values set in File → Font Info… →
Masters → Axes Coordinates. The external coordinates are the

result of axis mapping; they are used for interpolation.

Interpolation Glyphs 3 Handbook, October 2021 200

Setup axis mapping by adding the ‘Axis Mappings’ custom

parameter in File → Font Info… → Font. Click its value to edit

the mappings:

The axis mappings dialog is split into three panes:

the axis list;

a list of the mapping control points of the selected axis;

a visual editor for the control points of the selected axis.

The mappings list is divided into two columns: the internal

coordinates on the left and the external coordinates on the right.

Note that the external coordinates also have the ‘Axis Location’

custom parameter applied, if set, which is why the internal and

external coordinates might differ even for a linear mapping.

Click the plus button to add a new control point. The new

point will show up in the mappings list and the visual editor.

Alternatively, click on the blue line in the visual editor to add a

new control point.

Click a value in the list to edit it or drag a control point up and

down in the visual editor. Move the currently selected point with

the arrow keys up/down and left/right. Hold down Shift for

increments of 10 and Command for 100. The currently selected

control point is highlighted in the list and enlarged in the visual

editor. Delete the selected control point by clicking the

minus button.

Add an ‘Axis Mappings’ custom parameter to a variable font

setting in File → Font Info… → Exports to customize the mapping

for different variable font exports.

Interpolation Glyphs 3 Handbook, October 2021 201

13.10.4 Style Attributes Table

The Style Attributes (STAT) table is information stored in a font

file that gives names to different locations on the variation axes.

This allows software using a variable font to display a style name

for every possible axis configuration.

For example, consider a variable font named ‘Example’ that

has a Weight axis (200-700) and a Width axis (50–150). The STAT

table allows to define names for certain axis locations:

Weight Name

200 Thin

300 Light

400 Regular

500 Medium

600 Semibold

700 Bold

Width Name

50 Compressed

75 Condensed

100 Normal

125 Wide

150 Expanded

With this information, applications can construct a style name for

arbitrary axis configurations. Setting Weight= 600, Width= 75

might yield ‘Example Semibold Condensed’. Names can be

marked as elidable. An elidable name is removed when combined

with other names. For example, the default ‘Normal’ width name

may be marked as elidable so that the ‘Bold Normal’ style is

simplified to ‘Bold’.

Glyphs automatically compiles all information required for the

STAT table from the font instance names and their axis

coordinates. If the STAT table is not as desired, customize it by

adding the following two custom parameters in File → Font
Info… → Exports.

Add the ‘Style Name as STAT entry’ custom parameter to

instances that differ from the variable font origin (see p. 199) on a

single axis. Set the value to the four-letter tag of that axis. If, for

example, the Regular master is the origin and the Light instance

differs from it only on the Weight axis, add this parameter and set

it to ‘wght’.

Add the ‘Elidable STAT Axis Value Name’ custom parameter to

instances that have an elidable name component on an axis. Set

the value to the four-letter tag of the axis on which the instance

name is elidable. For example, a Regular instance might need

multiple parameters, one for each font axis, since its name is

elidable in every case.

Interpolation Glyphs 3 Handbook, October 2021 202

14 Color Fonts

Glyphs offers a streamlined workflow for creating four types of

color fonts: classic layer fonts, Microsoft-style CPAL and COLR

OpenType tables, the Apple-style sbix OpenType table, and the

Mozilla/Adobe-style SVG table.

14.1 WORKING WITH COLOR FONTS

Color fonts make use of multiple layers per glyph. See

section 13.8, ‘Editing Multiple Masters’ (p. 196) for general

information on working with multiple layers.

14.1.1 Keeping the Metrics in Sync

When working on a color font project, masters must share the

same metrics and kerning pairs so that all color layers align. Use

the ‘Link Metrics With First Master’ custom parameter in File →
Font Info… →Masters to sync the metrics and kerning of the first

master with all masters. Add this custom parameter to every

master except the first one. Alternatively, add the ‘Link Metrics

With Master’ custom parameter, which can be linked to any other

master, not just the first one.

14.1.2 Previewing Color Fonts

Edit View shows colors for other glyphs when a color layer is

selected in the current glyph. The Preview area at the bottom of

Edit View (activated with the eye button) and the Preview

Panel (Window → Preview Panel) display a glyph in color when

one of its color layers is selected. The Text Preview (Window →
Text Preview) displays the font as it would appear in Mac

applications using Core Text (such as Text Edit or Pages).

14.1.3 Exporting Color Fonts

Color fonts are regular OpenType fonts. They are compatible with

all OpenType flavors supported by Glyphs: PostScript/CFF (.otf),

TrueType (.ttf), and WOFF/WOFF2. However, color fonts only

work in environments that support their display. For instance,

layered color fonts only work in applications that can put pieces

of text precisely on top of each other, like most DTP software.

Glyphs 3 Handbook, October 2021 203

14.2 LAYERED COLOR FONTS

The four fonts which result in

the stacked text on the right.

Layered color fonts are separate fonts that are stacked on top of

each other. For such a font to work properly, the software

environment in which it is used must support the stacking of

text layers.

14.2.1 Initial Setup

Layered color fonts have a color axis. Add it in File → Font Info… →
Font by clicking the plus button next to the Axes heading.

Name the axis ‘Color’ and use a four-letter tag such as ‘COLR’.

Each color gets its own master. Contrary to most other fonts, the

masters of a layered color font are not interpolated. This means

that the masters of a layered color font are not required to be

compatible for interpolation. Signal this to Glyphs by adding the

‘Enforce Compatibility Check’ custom parameter in the Font tab

and unchecking it:

With this parameter disabled, add masters for each color layer.

Give each master a descriptive name like ‘Front’, ‘Inside Light’,

‘Inside Shadow’, or ‘Outer Shadow’. In the Axes Coordinates

section, set a different numeric Color value for each master; for

example, 1 for the first master and 2 for the second.
Pro Tip: Additionally, add a

‘Master Color Dark’ custom

parameter to use a different

color for the dark system

appearance.

Add a ‘Master Color’ custom parameter to each master to

define its preview color. Note that custom parameters can also

be added when multiple masters are selected. This color is only

Color Fonts Glyphs 3 Handbook, October 2021 204

used inside Glyphs; the font user can set the exported font files in

any color. Drag the Opacity slider in the color picker to use a

semitransparent color for the preview.

Switch to the Exports tab, click the plus button located in

the bottom left and choose Add Instance for each Master. This

will add an exporting instance for each axis coordinate of the

Color axis.

14.2.2 Editing Color Layers

Edit color layers like normal master layers in Edit View (see p. 55).

By default, the currently selected master is shown. Click the

eye / buttons in the Layers palette (see p. 61) to view

multiple layers at the same time. When working with layered

color fonts, it is common to show all master layers.

The order of the masters in File → Font Info… →Masters is

reflected in Edit View: the first master is shown on top, the

second master one layer below, and so on.

14.2.3 Exporting

Layered color fonts are exported as separate font files, one for

each color layer. These color layers use the instances as described

in section 14.2.1, ‘Initial Setup’ (p. 204).

Glyphs can also convert a layered color font to an SVG color

font that includes all color layers in a single font file. For that, add

a new instance in File → Font Info… → Exports and add the ‘Color

Layers to SVG’ custom parameter. Then, add the ‘Export SVG

Table’ custom parameter to the same instance for the SVG data

to be included in the export. Ensure that the checkboxes of both

custom parameters are checked.

14.3 CPAL/COLR FONTS

Microsoft-style color fonts are fonts that contain two additional

tables: CPAL (Color Palette) and COLR (Color). These color fonts

work like layered color fonts (see p. 204), but they export all color

Color Fonts Glyphs 3 Handbook, October 2021 205

layers to a single font file instead of exporting one font file

per layer.

14.3.1 Defining the Color Palette

In File → Font Info… → Font, add the ‘Color Palettes’ custom

parameter. Click its value to edit the color palette.

Click the plus button to add additional colors to the palette.

Each color is identified by a color index counting up from 0.

Change colors by clicking a color swatch and choosing a

different value with the color picker. Select a row and click the

minus button to delete a color.

Multiple color palettes can be defined. Add additional color

palettes by choosing Add Palette from the gear menu. Click

the column heading of a palette to remove it with Remove

Palette. See section 14.3.4, ‘Exporting’ (p. 207) for details on

choosing a palette for each instance.

Confirm the edits to the color palettes with OK or click Cancel

to discard all edits and keep the palettes as they were.

14.3.2 Master Layer as Fallback

CPAL/COLR color fonts are not supported by all applications. In

case an app cannot handle the color information, it displays the

master layer. The master is not displayed in apps that support

CPAL/COLR color fonts.

14.3.3 Color Palette Layers

Add color layers by clicking the plus button in the Layers

palette (Window → Palette, Cmd-Opt-P) and choose Color Palette

from the context menu on the layer. Pick a color from the color

palette by clicking the color swatch to the right of the layer name.

Choose either a predefined color or the asterisk (*) option. The

Color Fonts Glyphs 3 Handbook, October 2021 206

asterisk option uses the color that the font user defines. Glyphs

previews this color in black (or in white, for the dark system

appearance).

Color Palette layers are named ‘Color’ and the color index

from the ‘Color Palettes’ custom parameter. Multiple layers of a

glyph can have the same color, and some colors of the palette

might not be used at all in a glyph. Not all glyphs need to have

the same number of color layers: some might only have a single

color layer while others have multiple layers for each color.

14.3.4 Exporting

Exported instances of CPAL/COLR fonts use the first color

palette by default. Add the ‘Color Palette for CPAL’ custom

parameter to an instance in File → Font Info… → Exports to choose

a different color palette for that instance. Note that the color

palette IDs start at 0 for the first palette. Add additional palettes

as described in section 14.3.1, ‘Defining the Color Palette’ (p. 206).

Remove all colors from an instance by adding an ‘Export

COLR Table’ custom parameter and unchecking it. This will use

just the fallback layer and discard the CPAL and COLR tables.

Glyphs can also convert a CPAL/COLR font to an SVG color

font by adding the following custom parameters in File → Font
Info… → Exports:

Check the ‘Color Layers to SVG’ custom parameter.

Set ‘Color Palette for SVG’ to the number of the palette that

should be used for the conversion. Palettes are numbered

starting at ‘0’. The palette number is written in the column header

in the ‘Color Palettes’ custom parameter (see p. 206).

Check the ‘Export SVG Table’ custom parameter for the SVG data

to be included in the export.

Color Fonts Glyphs 3 Handbook, October 2021 207

14.4 SBIX FONTS

See the TrueType Reference

Manual¹ for details on sbix

color fonts.

Apple-style color fonts include a sbix table (Standard Bitmap

Graphics) containing bitmap data of various resolutions. Multiple

images of various sizes may be assigned to each glyph. Thus, the

device displaying it can pick the most appropriate resolution.

14.4.1 Standard Bitmap Graphics

In contrast to the other color font formats covered in this chapter,

sbix fonts do not use vector but bitmap graphics. These graphics

may be prepared as PNG, JPEG, or TIFF images.

Each glyph contains a single image file. However, images can

be provided for different pixel sizes. A glyph might contain a

512 × 512 pixel image, but also lower resolution versions at, for

example, 128, 32, and 16 pixels. While a single large image per

glyph could be scaled down to fit every size below, including

smaller sizes of images presents two advantages:

Providing images for smaller sizes allows to fine-tune the

graphics for low-resolution output. For example, the design

might be adapted to read more clearly at smaller pixel sizes.

If smaller images are not included in the font, the text renderer

needs to scale the large images down to the desired font size.

This can be slow, especially on low-end devices, and use more

energy, which is relevant to mobile devices.

Images are scaled up by the text renderer when using a font size

above the largest image dimensions, resulting in blurry

glyph images.

14.4.2 Preparing Images

Create the graphics in an image editing application and export

them at the desired sizes. This size is measured in pixel units, not

in font size units. For example, export images at heights of 512,

256, 32, and 16 pixels.

1 developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6sbix.html

Color Fonts Glyphs 3 Handbook, October 2021 208

https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6sbix.html

The differently sized images for a glyph must all share the

same aspect ratio. This aspect ratio is width ÷ height. So, if the

image version with a height of 512 pixels is 512 pixels wide

(512 ÷ 512 = 1, a square), all other images must also be square. If

one image is twice as tall as it is wide (256 ÷ 512 = 0.5), all other

images for that glyph must share the aspect ratio of 0.5.

Pro Tip: For clarity, name

image files after their glyph

name and pixel size, such as

‘rainbow 32.png’ for🌈.

When adding these images to a Glyphs file, they are not

copied into the Glyphs file but merely referenced. Moving,

renaming, or deleting the image files will break these references.

Therefore, it is best practice to place the images in a folder next

to the Glyphs file.

14.4.3 Adding Images to Glyphs

The master layer does not contain glyph outlines. However, some

software—such as Google Chrome and Adobe Photoshop—use

the bounding box of paths on the master layer as a mask for the

bitmap images. Therefore, it is a best practice to place tiny paths

in the bottom left and top right of the master layer, like here:

These tiny paths can also have their nodes on the same single

point, thus hiding the path. The red node background that

Glyphs shows for overlapping nodes can be ignored in this case.

This bounding box, highlighted in green in the image above, is

used by Glyphs to place the images on their color layers.

Color layers for the sbix format are named ‘iColor’ layers. Add

iColor layers by clicking the plus button in the Layers palette

(Window → Palette, Cmd-Opt-P) and choosing iColor from the

context menu on the layer. The name of an iColor layer includes

its size, for example, ‘iColor 512’ or ‘iColor 24’.

Double-click a layer entry in the Layers palette to change its

size. Scale images by changing this iColor pixel size. Images

appear smaller if the entered pixel size is larger than the image,

and they appear larger if the entered size is smaller than

Color Fonts Glyphs 3 Handbook, October 2021 209

the image.

Add iColor layers for each image resolution. Note that

changing the width of the master layer also changes the width of

all of its iColor layers.

14.4.4 Exporting

Glyphs includes the sbix table in exported font files if iColor

layers are present in the font. Discard the sbix table by adding an

‘Export sbix Table’ custom parameter to an instance and

unchecking it.

Glyphs can convert sbix color fonts to SVG color fonts (see

p. 210). This allows the color font to be used in software that

supports SVG color fonts but not sbix fonts. Add the ‘SBIX to

SVG’ custom parameter to an instance and set its value to the

desired pixel size at which Glyphs will convert the sbix image

data to SVG data. For example, setting this parameter to 128 uses

the iColor layers sized at 128 pixels, if any, otherwise the smallest

iColor layers above 128, and if there are none at or above that

size, the next largest available iColor layers.

Uncheck ‘Export sbix Table’ and set the ‘SBIX to SVG’

parameter to export an SVG-only color font.

14.5 SVG COLOR FONTS

There used to be an SVG

format for fonts, not images.

That SVG format is now

obsolete. The SVG color fonts

in this chapter contain SVG

images for their glyphs but are

still OpenType fonts.

The Scalable Vector Graphics (SVG) image format can contain

both vector and bitmap data. An SVG color font uses SVG files to

display glyphs. SVG color fonts are also referred to as

OpenType-SVG or SVG-in-OpenType. Glyphs provides three

methods for creating SVG color fonts:

convert a layered color font, CPAL/COLR font, or sbix

font to SVG;

use SVG files created in a graphic design app;

create the SVG images inside Glyphs.

Color Fonts Glyphs 3 Handbook, October 2021 210

14.5.1 Converting to SVG

See the respective sections for details on how to convert other

color font formats to SVG:

Layered color fonts: section 14.2.3, ‘Exporting’ (p. 205)

CPAL/COLR color fonts: section 14.3.4, ‘Exporting’ (p. 207)

sbix color fonts: section 14.4.4, ‘Exporting’ (p. 210)

14.5.2 Importing Existing SVG Files

In Edit View, add an SVG layer by clicking the plus button in

the Layers palette (Window → Palette, Cmd-Opt-P) and choose

svg from the context menu on the layer. An SVG image can also

contain bitmap data which may be useful for fonts imitating

handwriting (like the sbix format, see p. 208). Drag an SVG file

onto the layer to use it for that glyph.

Tip: For clarity, name image

files after their glyph name,

such as ‘A.svg’ and place them

in a folder named ‘Images’.

When adding SVG images to a Glyphs file, they are not copied

into it but merely referenced. Moving, renaming, or deleting the

SVG files will break these references. Therefore, it is best practice

to place the files in a folder next to the Glyphs file.

Resize and reposition the SVG image on the glyph layer like

any other image. See section 4.12.2, ‘Manipulating Images’ (p. 54).

Changing the width of the master layer also changes the width

of its SVG layer. In case an app cannot handle the SVG data, it

shows the master layer. The master layer is not shown in apps

that support SVG color fonts.

14.5.3 Creating SVG Glyphs

SVG glyphs can be created using color layers. Add a color layer

by clicking the plus button in the Layers palette (Window →
Palette, Cmd-Opt-P) and choose Color from the context menu on

the layer. Color layers are named ‘Color’ and display a color

spectrum disc.

Draw paths on a color layer like on any other layer. By default,

the drawn shapes are filled with a gray color. Edit the style of the

selected paths in the Attributes inspector located at the bottom

of the Palette (Window → Palette, Cmd-Opt-P). Toggle the display

of the Attributes inspector with View → Show Info (Cmd-Shift-I).

By default, the Attributes inspector contains controls for the

stroke and fill of the selected paths. Click the plus button next

to the Attributes heading to show additional controls. The

Shadow, Inner Shadow, and Pattern Image options cannot be

Color Fonts Glyphs 3 Handbook, October 2021 211

exported to SVG; they are used when exporting to PNG or PDF

with Filter → Glyph as Image.

Change the color of an attribute by clicking the color

swatch button. A red stroke through the swatch indicates a

fully transparent color.

Stroke

Enter a stroke width in the text field next to the Stroke heading.

The stroke width is measured in font units. For example, entering

‘12’ will add a 12 unit wide stroke along the path. An empty

stroke width field assumes a value of 0. By default, the stroke is

centered on the path. Choose the left or right stroke

alignment to move the stroke inside or outside the path.

Change the stroke color by clicking the color swatch

button. Click the minus button to remove the stroke by setting

the stroke width to 0 and the color to transparent.

Fill

Change the fill color by clicking the color swatch button.

Click the minus button to remove the fill by setting the color

to transparent. The fill control is not shown when a gradient is

added to a path.

Gradient

Click the plus button next to the Attributes heading to add a

Gradient effect to the selected paths. A gradient replaces the Fill

attribute. There are two types of gradients: linear and

radial gradients. Click an icon to change the type.

A gradient has at least two color stops. These are indicated as

small knobs on the bottom of the gradient bar. Click a knob to

edit the stop color. Add additional color stops by clicking

anywhere on the gradient bar. Remove a color stop by dragging

its knob off of the gradient bar.

In Edit View, knobs control the position of the gradient. For

a linear gradient, two knobs control the start and end position

of the gradient. For a radial gradient, a single knob controls

the origin of the gradient.

Color Fonts Glyphs 3 Handbook, October 2021 212

Exporting

Export color layers with path attributes to SVG by adding the

‘Color Layers to SVG’ custom parameter in File → Font Info… →
Exports. If this parameter is checked, Glyphs uses the paths and

attributes from the Color layers to produce an SVG table and

adds it to the exported font file.

Color Fonts Glyphs 3 Handbook, October 2021 213

15 Import & Export

15.1 EXPORTING FONT FILES

Choose File → Export… (Cmd-E) to show the export dialog for the

currently open Glyphs file. Hold down the Option key and choose

Export All (Cmd-Opt-E) to export all open Glyphs files without

showing an export dialog. Exported files overwrite existing files.

The export dialog offers different export formats. These are

described in the following sections.

15.1.1 OpenType Export

The OTF tab exports static OpenType fonts. This export option

uses the font instances (see p. 189) or, if none are configured, a

default instance based on the first master.

Outline Flavor

There are two flavors of OpenType fonts. Their main difference is

the type of glyph outlines that they contain.

PostScript/CFF flavor files containing a CFF (Compact Font

Format) table storing glyph outlines as cubic Bézier curves. Font

files with this flavor typically end in ‘.otf’.

Glyphs 3 Handbook, October 2021 214

TrueType flavor files containing a glyf table storing glyph outlines

as quadratic Bézier curves and other tables related to the

TrueType format. Font files with this flavor typically end in ‘.ttf’.

Pick one of the two outline flavors. Paths drawn in Glyphs are

cubic, but Glyphs can also edit quadratic paths. When exporting

to TrueType, Glyphs creates quadratic paths from the cubic paths

stored in the Glyphs file. This might introduce minuscule

differences between the drawn and the exported glyph outlines.

Besides the paths, the two flavors differ in their hinting

capabilities; see chapter 11, ‘PostScript Hinting’ (p. 155) and

chapter 12, ‘TrueType Hinting’ (p. 164) for details. Exporting to

TrueType keeps components without converting them to outlines;

see section 9.1, ‘Components’ (p. 126) for details.

File Format

The first option (.otf or .ttf) is generally used to install a font in an

operating system and use the font in graphic design and word

processing applications. WOFF (.woff) and WOFF2 (.woff2) are

intended for usage on the web (Web Open Font Format). Check

all formats that should be exported.

Options

The Remove Overlap option flattens all glyph outlines not to

include overlapping paths. This is the same operation as Path →
Remove Overlap; see section 6.2.10, ‘Remove Overlap’ (p. 76) for

details. Release versions of fonts should have this option

checked; uncheck it only during development for faster exports

or if the Remove Overlap filter is already applied using custom

parameters.

Check the Autohint option to apply automatic hinting. If the

PostScript/CFF flavor is selected, autohinting is applied to all

glyphs that do not contain manual PostScript hints; see

section 11.2, ‘Autohinting’ (p. 159). For the TrueType flavor,

autohinting is applied to the entire font, and any manually added

TT hints will be ignored; see section 12.1, ‘Autohinting’ (p. 164).

Export Destination

The export dialog offers two possible export destinations.

Import & Export Glyphs 3 Handbook, October 2021 215

Select the checkbox next to the file path to export to the chosen

folder. Choose a different folder by clicking the file path and

picking a folder from the file browser dialog. Common

destinations are the system font library¹ and the Adobe

fonts folder.²

Select the Test Install checkbox to install the fonts directly on the

Mac without exporting any font files. A test install writes the font

data directly into the font loading memory of the Mac. The

exported fonts will be available in applications using the system

font loading mechanisms. Test installed fonts bypass many font

caching issues but need to be re-installed after a reboot.

Click the Next… button to export to the selected destination.

If neither export destination is checked, Glyphs will prompt for

an export folder.

The export destination can be customized per instance in

File → Font Info… → Exports by adding an ‘Export Folder’ custom

parameter. The instance will be exported to that this folder

relative to the selected export destination. The export folder may

contain slashes (‘/’) to export to a nested folder structure (such as

‘Trial Versions/Webfonts’). Place the export folder outside the

export destination by going up folder levels with two dots (‘..’,

such as ‘../Trial Versions’).

15.1.2 Variable Fonts Export

The Variable Fonts tab exports variable OpenType fonts. This

export option uses the variable font settings (see p. 189) or, if

1 Username → Library → Fonts

2 Username → Library → Application Support → Adobe → Fonts

Import & Export Glyphs 3 Handbook, October 2021 216

none are configured, a default variable font setting.

Set the desired file formats and export destination like in the

OTF tab. Variable fonts are always exported in the

TrueType flavor.

15.1.3 UFO Export

The UFO tab exports the selected masters as UFO (Unified Font

Object) files. Select one or multiple masters to be exported to

UFO by Command-clicking entries in the masters list. Select a

range of masters by Shift-clicking or all by choosing Edit → Select
All (Cmd-A).

Check Convert Glyph Names to Production Names to use the

glyph production names instead of the nice names used inside

Glyphs. This option is helpful when working on the exported

UFO files with tools expecting a simplified naming scheme

compared to the more expressive names used by Glyphs. See

section 7.3.1, ‘Glyph Name’ (p. 82) for more on the difference

between nice names and production names.

Decompose Smart Stuff handles Glyphs-specific features such

as smart components or corner components to regular paths.

The UFO format does not support these smart components.

Check this option to convert unsupported Glyphs features to

regular paths or leave it unchecked to remove them.

Click Next… to choose an export destination. UFO files are

exported in the UFO version 3 format. See section 15.2.3, ‘Unified

Import & Export Glyphs 3 Handbook, October 2021 217

Font Object’ (p. 219) for details on working with UFO files.

15.1.4 Metrics Export

The Metrics tab exports the font metrics of the current master.

The current master is the master that is currently selected in the

toolbar (see p. 55).

Click Next… to choose the export destination and the export

format. There are two metrics formats to choose from:

Metrics File is a proprietary Glyphs metrics format containing all

spacing and kerning information of the master.

AFM File (Adobe Font Metrics) is an old-style format that is

compatible with other font editors. However, it cannot contain all

types of metrics information. For instance, AFM does not

support group kerning or metrics keys.

See section 15.4.2, ‘Importing Metrics’ (p. 222) for details on

importing these metrics files into a Glyphs file.

15.2 SOURCE FORMATS

A Glyphs document can be stored in one of three source file

formats. Plug-ins can add support for additional source formats;

see section 16.3, ‘Plug-ins’ (p. 229).

Pick the source file format when saving with File → Save As…
(Cmd-Shift-S). Each format is described in the following sections.

15.2.1 Glyphs File

The Glyphs File format is the default format in which new Glyphs

files are created. Glyphs files end in the ‘.glyphs’ file suffix.Pro Tip: .glyphs files are

stored as NeXTSTEP-flavor

property lists. They can be

opened and edited in a text

editor for advanced editing

and introspection.

A

Glyphs file is flat, meaning it is stored as a single file containing

all information about the font.

When opening a Glyphs files created in Glyphs 2, Glyphs 3 will

keep the file in a Glyphs 2 compatible mode. This way, the file can

still be opened in Glyphs 2 after editing it in Glyphs 3. However,

Import & Export Glyphs 3 Handbook, October 2021 218

not all features of Glyphs 3 can be stored in a version 2 file. In

File → Font Info… → Other → File Saving, change the File format

version to Version 3. New Glyphs files are created in the Version 3

format. See also section 8.5.6, ‘File Format Version’ (p. 124).

15.2.2 Glyphs File Package

The Glyphs File Package format is identical to the Glyphs File

format, except it splits parts of the font into separate files and

groups those files into a folder with the ‘.glyphspackage’ suffix.

Notably, every glyph is put into its own file.

In Finder, a .glyphspackage folder appears as a normal file

that can be opened by double-clicking it like any other file.

Introspect its inner contents by Control-clicking or right-clicking

the package file in Finder and choosing Show Package Contents

from the context menu.

A normal Glyphs file requires re-saving the entire file even if

only a single glyph is changed. Since a package contains a file per

glyph, only the files that changed are modified when saving.

While this difference is inconsequential for smaller fonts, the

Glyphs package format is recommended for projects with many

glyphs (such as CJK fonts).

Splitting every glyph into its own file also helps when

managing the document with a version control system (VCS) such

as Git. The frequently changing display strings representing the

glyphs of the Edit View tabs are stored in a UIState.plist file

inside the package. This makes it easy to ignore user interface

changes in the VCS.

15.2.3 Unified Font Object

The UFO format is available both as a source file format and as

an export format (see p. 217). When using UFO as a source

format, not all features are available in Glyphs. Activating an

unsupported feature will trigger a warning message.

Glyphs supports opening and saving UFO version 2 and

version 3 formats. The version is maintained when opening a

UFO file. New UFO files created using the UFO export are stored

in version 3 format.

UFO files end in the ‘.ufo’ suffix. Like Glyphs packages, they

are folders appearing as a normal file in Finder. Unlike Glyphs

files and Glyphs packages, a UFO stores only a single master.

UFO files are compatible with many other font development

Import & Export Glyphs 3 Handbook, October 2021 219

tools. Use UFO as a source format when working on a font

together with others that use UFO-compatible software.

However, when using UFO for a single-purpose tool (for example,

a specialized kerning tool), consider working with a Glyphs file or

Glyphs package and exporting to UFO. The results of the

specialized tool can then be imported into the Glyphs file, for

instance, by importing metrics (see p. 222).

See section 15.3.1, ‘Font File Importing Behaviors’ (p. 220) for

file import configuration options. Configure these options for a

specific UFO file in File → Font Info… → Other; see section 8.5.3,

‘Use Custom Naming’ (p. 123) and section 8.5.4, ‘Disable

Automatic Alignment’ (p. 124).

15.3 OPENING FONT FILES

Prefer working with sources

(‘.glyphs’, ‘.glyphspackage’,

‘.ufo’) as described in

section 15.2, ‘Source

Formats’ (p. 218).

Glyphs can open compiled font files of the following formats:

OpenType, PostScript/CFF flavor (‘.otf’)

OpenType, TrueType flavor (‘.ttf’)

OpenType Collection, TrueType flavor (‘.ttc’)

Adobe Type 1, PostScript Font Binary (‘.pfb’)

Glyphs cannot reverse-engineer all the information inside a

compiled font file. Opening such a file and exporting it again will

produce a font file different from the original. For example, some

hinting information and OpenType tables are lost when importing

a compiled font. Compiled fonts are opened in a view-only mode.

Choose File → Save As… (Cmd-Shift-S) to save it to one of the

source formats (see p. 218).

The order of the glyphs is written into a ‘glyphOrder’ custom

parameter in File → Font Info… → Font. Plug-ins can add support

for opening additional font formats; see section 16.3,

‘Plug-ins’ (p. 229).

15.3.1 Font File Importing Behaviors

When opening a font file, Glyphs will try to apply its built-in

naming scheme and sync the metrics of composite glyphs with

their base glyphs. These behaviors can be disabled in the

application preferences; see section 3.3, ‘User Settings’ (p. 15) for

Keep Glyph Names from Imported Files and Disable Automatic

Alignment for Imported Files.

Import & Export Glyphs 3 Handbook, October 2021 220

15.3.2 Opening TrueType Font

TrueType flavor OpenType fonts are imported maintaining their

quadratic Bézier curves. Glyphs can edit but not create quadratic

curves. Convert them to PostScript/CFF flavor cubic curves with

Path → Other → Convert to Cubic. This command applies to all

selected paths, layers, or glyphs. Components contained in

TrueType fonts are kept.

15.3.3 Importing Multiple Fonts Files into a Glyphs File

Import fonts as masters by choosing File → Font Info… →
Masters → → Add Other Font. See section 8.2.1, ‘Managing

Masters’ (p. 106) for details. If the newly added masters are

interpolated, ensure they are compatible (see section 13.5,

‘Outline Compatibility’, p. 189).

15.3.4 Importing OpenType Features

Some OpenType features cannot be reconstructed when opening

a compiled OpenType file. The features in File → Font Info… →
Features show a list of features that should be imported. Lookups

used from multiple features are placed in a prefix named ‘Prefix’.

Kerning and kerning groups are mostly preserved, but contextual

kerning is not.

15.3.5 Importing PostScript Hints

Most glyph-level PostScript hints are preserved. Alignment zones

and standard stems are also preserved. However, most

glyph-level hints are not connected to nodes anymore. In a

Multiple Masters setup, drag the blue circle and triangle

onto outline nodes that fit the hint. See section 11.3.1, ‘Stem Hints’

(p. 161) for details.

15.4 IMPORTING FONT DATA

15.4.1 Importing Outlines

File → Import → Outlines… imports PDF, EPS, or SVG files as

outlines. In Font View, multiple files can be selected and imported

into the glyphs with a matching name (for example, A.pdf into A

and comma.svg into comma). If no glyph exists for the file,

Glyphs prompts to create a matching glyph or ignore the file.

Import & Export Glyphs 3 Handbook, October 2021 221

Click OK to skip the file or

Add Glyph to add a new glyph

matching the filename to the

font and import the

outlines into it.

In Edit View, File → Import → Outlines… imports a single file into

the current glyph.

Vector paths stored in the file are imported as glyph outlines.

Only outlines are kept; the fill color and other styles are

discarded. For PDF files, the stroke thickness is imported as a

stroke style (see p. 33).

See section 15.5, ‘Vector Drawing Applications’ (p. 223) for

information on importing outlines with copy and paste.

15.4.2 Importing Metrics

Glyphs can import the spacing and kerning of a master from

Metrics and AFM files (both of which can be exported from

Glyphs, see section 15.1.4, ‘Metrics Export’, p. 218) and from

Glyphs and UFO files.

In Font View, choose File → Import →Metrics… to import

metrics into the currently open Glyphs file. Select a file and click

Import, then an import dialog will appear:

Depending on the selected

file, one of the two import

dialogs on the right is shown.

Left: Metrics or AFM file.

Right: Glyphs or UFO file.

Import & Export Glyphs 3 Handbook, October 2021 222

Select whether to import kerning values and kerning classes with

the respective checkboxes. When importing metrics from a

Glyphs file, kerning values are not supported. Import kerning

values from one Glyphs file into another by copying and pasting

them in the Kerning window (Window → Kerning, Cmd-Opt-K,

see section 10.2.6, ‘Kerning Window’, p. 151 for details).

Importing from a Metrics for AFM file offers controls for glyph

metrics in addition to kerning. Check Import Metrics to choose

from one of four import modes:

import left sidebearing and width, adjust the right sidebearing;

import right sidebearing and width, adjust the left sidebearing;

import both sidebearings, adjust the width;

import the width and center the outline (equal sidebearings).

Automatic alignment is disabled for components where the

metric values deviate from those derived from automatic

alignment unless Keep Aligned Components is checked. Metrics

are imported for all glyphs by default. Check Selected Glyphs to

import metrics only for the selected glyphs or all glyphs if none

are selected.

15.4.3 Importing Feature Files

File → Import → Features… imports OpenType features written in

the AFDKO feature language. Select a file ending in ‘.fea’ and

click Import to add the contained features to File → Font Info… →
Features. See section 8.4, ‘Features’ (p. 114) for details on

OpenType features.

15.5 VECTOR DRAWING APPLICATIONS

Glyphs supports pasting outlines from most vector drawing

applications. The pasted outline may be placed far outside the

glyph box. Glyphs detects such situations and offers to correct

the bounds of the pasted outline:

Import & Export Glyphs 3 Handbook, October 2021 223

The following sections describe recommended setups for specific

applications.

15.5.1 Adobe Illustrator

Tip: Quickly get the correct

scale by drawing a rectangle

with the height of the capital

letters in Glyphs, copy and

paste it into an Illustrator

artboard and scale the

drawings to fit the height of

the rectangle.

Vector outlines can be imported from Illustrator with copy and

paste. For best results, configure the Illustrator artboard such that

one point corresponds to one font unit. A font with 1000 UPM

would map to an Illustrator artboard 1000 pt high.

Copy closed paths in Illustrator and paste them with Edit →
Paste (Cmd-V) in Glyphs onto the current glyph. Node

coordinates are rounded unless the grid spacing (see p. 122) of

the font is zero.

15.5.2 Affinity Designer

Affinity Designer places the copied outlines at the origin (0, 0),

regardless of where the outline is placed in the Designer artboard.

Glyphs supports both the standard outline copying mode and the

SVG mode (Affinity Designer → Preferences… → General → Copy
items as SVG).

15.5.3 Sketch

In Sketch, set the contour to a 1 pt outline without fill. This will

prevent double outlines in Glyphs.

15.6 FILE FORMAT INTEROPERABILITY

The UFO format is generally used when exchanging files with

other font editors. See section 15.2.3, ‘Unified Font Object’

(p. 219) for details.

Import & Export Glyphs 3 Handbook, October 2021 224

FontLab 7 imports and exports Glyphs files natively. This will

preserve more details than exchanging UFO files with FontLab.

For FontLab Studio 5, use the Glyphs Import³ and Glyphs

Export⁴ macros. Install them in FontLab Studio 5 by opening

Finder and choosing Go → Go to Folder. Enter the path of the

FontLab Studio 5 macros folder⁵ and press Return. Place the two

macro files there and relaunch FontLab Studio 5. The macros will

be available in the macro toolbar.

Note that not all Glyphs features are supported in other font

editors. Exchanging files may thus result in simplified data (for

example, decomposed outlines) or missing font information.

Consider keeping a copy of the original Glyphs file for safety.

15.7 PROJECTS

Projects are collections of instance definitions linked to a Glyphs

font file but kept in a separate project file. This is useful for

setting up different font versions without altering or

compromising the original Glyphs file. Project files carry a

‘.glyphsproject’ suffix.

15.7.1 Setting up a Project

Create a new Glyphs project with File → New Project. Save the

newly created project with File → Save (Cmd-S).

Click the Choose button located in the top right of the project

window, select a Glyphs file, and confirm with Choose. The

selected font does not need to be open in Glyphs. This links the

Glyphs file to the project. Click the file path to choose a different

Glyphs file. The instances of the font are listed in the sidebar of

the project window:

3 github.com/schriftgestalt/Glyphs-Scripts/blob/master/Glyphs%20Import.py

4 github.com/schriftgestalt/Glyphs-Scripts/blob/master/Glyphs%20Export.py

5 ~/Library/Application Support/FontLab/Studio 5/Macros/

Import & Export Glyphs 3 Handbook, October 2021 225

https://github.com/schriftgestalt/Glyphs-Scripts/blob/master/Glyphs%20Import.py
https://github.com/schriftgestalt/Glyphs-Scripts/blob/master/Glyphs%20Export.py
https://github.com/schriftgestalt/Glyphs-Scripts/blob/master/Glyphs%20Export.py
https://github.com/schriftgestalt/Glyphs-Scripts/blob/master/Glyphs%20Import.py
https://github.com/schriftgestalt/Glyphs-Scripts/blob/master/Glyphs%20Export.py

Rearrange instances using drag and drop. Duplicate an instance

by Option-dragging it to its new location in the list. Alternatively,

copy (Cmd-C) and paste (Cmd-V) to duplicate the selected

instances. Click the plus button to add new instances and

variable font settings. Delete the selected instances with the

minus button. Revert to the instances of the Glyphs file with

the arrow button.

Edit the parameters of instances in the right half of the project

window. See section 8.3, ‘Exports’ (p. 110) for details.

15.7.2 Exporting a Project

Ensure that the project is saved (File → Save, Cmd-S) and that the

path to the linked font is valid (a path becomes invalid when the

linked file is renamed, moved, or deleted). Click the Export

Destination file path to set the export folder. Instances are

exported into this folder. Customize the export folder of an

instance with the ‘Export Folder’ custom parameter (see

section 15.1.1, ‘Export Destination’, p. 215). Click the Export button

located in the bottom right of the project window to export all

configured instances. The linked Glyphs file does not need to be

open for export.

Import & Export Glyphs 3 Handbook, October 2021 226

16 Extensions

Extend Glyphs with scripts and plug-ins. There are many existing

scripts and plug-ins that can be freely downloaded from the

Plugin Manager. Commercial extensions are also available online.

Write custom extensions to satisfy specific needs.

All scripts and most plug-ins are written in the Python

programming language. For these to run inside Glyphs, ensure

that Python is set up in the application preferences (see p. 18).

16.1 PLUGIN MANAGER

Browse a selection of freely available scripts, plug-ins, and

modules in Window → Plugin Manager.

At the top of the window are two groups of filters. Filter the

extensions by whether they are installed with the All, Installed,

Not Installed buttons. Filter by extension type with the Plugins,

Scripts, Modules buttons. Enter a keyword in the search field

located in the top right of the window to search by extension

name, description, or the name of the extension vendor.

Install an extension by clicking the green Install button

beside it. Uninstall an extension by clicking its Remove button.

Glyphs needs to be relaunched for newly installed plug-ins and

Glyphs 3 Handbook, October 2021 227

modules to be available. Newly installed scripts can be loaded

without relaunching Glyphs by holding down the Option key and

choosing Script → Reload Scripts (Cmd-Opt-Shift-Y). Updated

versions of extensions are installed automatically.

Enlarge preview images to their full size by clicking on them.

Click the gray link below the extension description to view its

website. Some extension vendors accept donations via PayPal

and Ko-fi. Click the icon to open the donation page.

New extensions are added regularly to the Plugin Manager.

Open a pull request at the Glyphs plug-in repository¹ to add a

new entry or contact the Glyphs team on the Glyphs forum² or

directly per email.³ See section 16.2.3, ‘Creating Scripts’ (p. 229)

and section 16.3.2, ‘Creating Plug-ins’ (p. 230) for details on

creating new extensions.

Plugin Manager lists extensions from the main repository,

accessible to all users. Add alternative repositories as described

in section 3.6.3, ‘Alternate Plugin Repositories’ (p. 18). These will

also show up in the Plugin Manager, but only for users that have

registered the same alternative repository in their Glyphs setup.

16.2 SCRIPTS

Scripts are written in the Python programming language and can

automate every part of Glyphs. Some scripts require specific

modules to be installed; install these from the Modules tab in the

Plugin Manager (see p. 227).

16.2.1 Run Scripts

Access all installed scripts from the Script menu. Many scripts

show a short description when the mouse pointer rests on its

menu item for a few seconds. Click a menu item to run the script.

Assign a keyboard shortcut to a script to run it with a key press.

See section 3.7, ‘Shortcuts’ (p. 20) for details. Re-run the last

script with Cmd-Opt-R or from the bottom of the Script menu.

16.2.2 The Scripts Folder

The Script menu reflects the files of the Scripts folder. Open the

Scripts folder with Script → Open Scripts Folder (Cmd-Shift-Y).

Reload the Script menu by holding down the Option key and

1 github.com/schriftgestalt/glyphs-packages

2 forum.glyphsapp.com

3 glyphsapp.com/contact

Extensions Glyphs 3 Handbook, October 2021 228

https://github.com/schriftgestalt/glyphs-packages
https://forum.glyphsapp.com
https://glyphsapp.com/contact
https://github.com/schriftgestalt/glyphs-packages
https://forum.glyphsapp.com
https://glyphsapp.com/contact

choosing Script → Reload Scripts (Cmd-Opt-Shift-Y).

16.2.3 Creating Scripts

Add scripts by creating a file ending in ‘.py’ in the Scripts folder.

The part of the filename before the ‘.py’ is arbitrary, but for

clarity, it is recommended to name the file as it should appear in

the Script menu, for example, ‘Some Script.py’. Create subfolders

to group scripts. Inside the Python file, add a comment at the top

with the following format:

MenuTitle: Script Name

Replace Script Name with the name that should be displayed in

the Script menu. Add a description that is shown when the

mouse pointer rests on the menu item by writing the following

code below the # MenuTitle line:

__doc__=" Description "

Replace Description with a short description of the script. The

description can span multiple lines:

__doc__="""

This description spans multiple lines.

Here is the second line.

"""

For writing the actual script, consult the Glyphs Python API

documentation.⁴ On the Glyphs website, there is a tutorial series⁵

from the first steps of programming in Python up to writing

advanced scripts. Viewing the code of existing scripts is also a

great way to learn. If any questions arise, feel free to ask on the

Glyphs forum⁶ or contact the Glyphs team directly.⁷

16.3 PLUG-INS

Plug-ins add a variety of capabilities and functionalities to Glyphs.

They can be grouped into the following types:

Reporter plug-ins (file name suffix ‘.glyphsReporter’) draw

additional information in Edit View and are controllable with a

Show … menu item at the bottom of the View menu.

4 docu.glyphsapp.com

5 glyphsapp.com/learn/recommendation:learn-python

6 forum.glyphsapp.com

7 glyphsapp.com/contact

Extensions Glyphs 3 Handbook, October 2021 229

https://docu.glyphsapp.com
https://docu.glyphsapp.com
https://glyphsapp.com/learn/recommendation:learn-python
https://forum.glyphsapp.com
https://forum.glyphsapp.com
https://glyphsapp.com/contact
https://docu.glyphsapp.com
https://glyphsapp.com/learn/recommendation:learn-python
https://forum.glyphsapp.com
https://glyphsapp.com/contact

Filter plug-ins (‘.glyphsFilter’) process glyph layers. They are

accessible from the Filter menu. Some can be run using the

‘Filter’ custom parameter (see section 6.1.2, ‘Filters as Custom

Parameters’, p. 66).

Palette plug-ins (‘.glyphsPalette’) add entries to the Palette

(Window → Palette, Cmd-Shift-P). See chapter 5, ‘Palette’ (p. 60)

for details.

File Format plug-ins (‘.glyphsFileFormat’) add support for

opening and exporting additional file formats.

Tool plug-ins (‘.glyphsTool’) add additional tools to the toolbar.

These tools extend Edit View with new features.

General plug-ins (‘.glyphsPlugin’) add functionality not covered

by one of the above types.

16.3.1 Installing Plug-ins

Install plug-ins from the Plugin Manager (see p. 227) with a single

click. Plug-ins are loaded when Glyphs launches, so Glyphs needs

to be relaunched for newly installed plug-ins to be loaded. Some

plug-ins require specific modules to be installed; install these

from the Modules tab in the Plugin Manager.

Manually install a plug-in by dragging and dropping it onto

the Glyphs app icon in the Dock. Installed plugins are moved to

the Plugins folder. The Plugins folder is located next to the

Scripts folder (see p. 228). Do not manually move plug-ins to the

Plugins folder since that interferes with the security system of the

Mac.Plug-ins installed from the

Plugin Manager can be

uninstalled there, too.

Uninstall a plug-in by deleting it from the Plugins folder.

16.3.2 Creating Plug-ins

Plug-ins are written in Python or Objective-C using the

Glyphs SDK.⁸ The Glyphs SDK (Software Development Kit) is an

open-source set of templates for creating Glyphs plug-ins. The

templates are available for both Python and Objective-C.

The Writing Plug-ins tutorial⁹ introduces the basic concepts of

plug-in development. See the Glyphs Python API

documentation¹⁰ and Glyphs Objective-C API documentation¹¹

for a complete reference. If any questions arise, feel free to ask

8 github.com/schriftgestalt/GlyphsSDK

9 glyphsapp.com/learn/plugins

10 docu.glyphsapp.com

11 docu.glyphsapp.com/Core/

Extensions Glyphs 3 Handbook, October 2021 230

https://github.com/schriftgestalt/GlyphsSDK
https://glyphsapp.com/learn/plugins
https://docu.glyphsapp.com
https://docu.glyphsapp.com
https://docu.glyphsapp.com/Core/
https://forum.glyphsapp.com
https://forum.glyphsapp.com
https://github.com/schriftgestalt/GlyphsSDK
https://forum.glyphsapp.com
https://glyphsapp.com/learn/plugins
https://forum.glyphsapp.com
https://docu.glyphsapp.com
https://forum.glyphsapp.com
https://docu.glyphsapp.com/Core/
https://forum.glyphsapp.com
https://forum.glyphsapp.com

on the Glyphs forum¹² or contact the Glyphs team directly.¹³

The Glyphs SDK also offers methods for interoperating with

Glyphs from an external application. In addition to the SDK,

Glyphs supports the Open Scripting Architecture, allowing for

automation via AppleScript or JavaScript.

12 forum.glyphsapp.com

13 glyphsapp.com/contact

Extensions Glyphs 3 Handbook, October 2021 231

https://forum.glyphsapp.com
https://forum.glyphsapp.com
https://forum.glyphsapp.com
https://forum.glyphsapp.com
https://glyphsapp.com/contact
https://forum.glyphsapp.com
https://glyphsapp.com/contact

17 Appendix

17.1 REGULAR EXPRESSIONS

Regular expressions (often abbreviated as regex) can be used in

some search fields to search for text patterns. For example,

‘[LlDd]caron’ matches any of the following: ‘Lcaron’, ‘lcaron’,

‘Dcaron’, and ‘dcaron’. Characters that have a special meaning in

patterns (such as . or ?) can be found by prefixing them with a

backslash \, for example, \. or \?.

. Matches any character (a, ., -, space, …).

[abc] Matches any character within the square brackets. For

example, ‘[ae]acute’ matches both ‘aacute’ and ‘eacute’.

[^abc] Matches any character that is not within the square

brackets. For example, ‘[^au]-cy’ matches ‘e-cy’ and ‘o-cy’

but not ‘a-cy’ or ‘u-cy’.

\d Matches any digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. ‘\D’ matches any

character except for digits. For example, ‘A\.00\d’ matches

‘A.000’ and ‘A.003’ but not ‘A.00F’ or ‘A.123’.

\w Matches word characters: letters, digits, and the underscore

(_). This is the same as writing ‘[a-zA-Z0-9_]’. For example,

‘\w+’ finds ‘a’ and ‘alpha’, but not ‘a-cy’. ‘\W’ matches any

character except for word characters.

? Matches the preceding pattern zero or one time. For example,

‘oe?’ finds both ‘o’ and ‘oe’; ‘[ae]?breve’ finds ‘abreve’,

‘ebreve’, and ‘breve’; and ‘grave(comb)?’ finds both ‘grave’

and ‘gravecomb’.

* Matches the preceding pattern zero or multiple times. For

example, ‘A.*’ finds ‘A’, ‘AE’, ‘Atilde’, and ‘Alpha’.

+ Matches the preceding pattern one or multiple times. For

example, ‘A.+’ finds ‘AE’, ‘Atilde’, and ‘Alpha’, but not ‘A’.

{n} Matches the preceding pattern n times. For example, ‘a{5}’

only finds ‘aaaaa’ and ‘\d{3}’ finds ‘000’ and ‘123’ but not ‘12’

or ‘1234’.

{n,m} Like ‘{n}’, but finds the preceding pattern between n and

m times. n may be 0 and m may be left off not to set an upper

limit. ‘a{0,1}’ is the same as ‘a?’, ‘a{0,}’ is the same as ‘a*’,

and ‘a{1,}’ is the same as ‘a+’. For example, ‘\d{3,5}’ finds

Glyphs 3 Handbook, October 2021 232

‘123’, ‘1234’, and ‘12345’, but not ‘12’ or ‘123456’.

Useful patterns include:

a.* Matches any glyph that starts with ‘a’.

.*a Matches any glyph that ends with ‘a’.

.*-.* Matches any glyph that contains a hyphen.

.*\..* Matches any glyph that contains a dot.

.*\.\d+ Matches any glyph that ends in a dot followed by digits.

\D*\.\d{3} Matches any glyph that ends in a dot and three

digits and does not contain any digits before that.

When finding and replacing with regular expressions, use ‘\1’,

‘\2’, … to insert parts of the found pattern in the replacement.

The parts must be enclosed in round parenthesis in the find

pattern. In the replace pattern, use a backslash followed by the

number referencing the parenthesized part.

For example, search for ‘(\d)(\d)’ and replace it with ‘\2\1’

to swap two digits (‘15’ becomes ‘51’ or ‘03’ becomes ‘30’). See

also section 7.5.1, ‘Search Field’ (p. 90).

17.2 CUSTOM FEATURE CODE SNIPPETS

When editing OpenType layout feature code (see p. 116), click the

snippets button located in the bottom right of the window.

Choose Show Snippet Folder to reveal the folder in which

additional snippets can be placed. Snippets are defined in

property list files (.plist) named ‘FeatureSnippetsNAME.plist’

where ‘NAME’ is the name of the snippets group. For example,

create a file named ‘FeatureSnippetsDecomposition.plist’:

(

{

title = "Soft Dotted";

code = "lookupflag UseMarkFilteringSet @TopMark;

sub @SoftDotted' @TopMark by @Dotless;";

},

{

title = "Decompose Precomposed";

code = "sub @Precomp' lookup decomp @Mark;";

}

)

Appendix Glyphs 3 Handbook, October 2021 233

17.3 AUTOMATIC FEATURE GENERATION

Glyphs can automatically generate a number of OpenType

features if it finds glyphs with certain names in the font.

aalt All Alternatives Glyphs automatically builds the aalt feature based on all features

that substitute glyphs.

liga Standard Ligatures Join the glyph names of the components with an underscore (‘_’).

Some common ligatures (f_f_i, f_f_l, f_f, fi, fl,

lu_lakkhangyao-thai, ru_lakkhangyao-thai) are automatically

placed in the ‘liga’ feature; all others go into ‘dlig’ by default.

Force a ligature into the ‘liga’ feature by adding the ‘.liga’ suffix to

its name, for example, f_b.liga or yi_yi-cy.liga.

dlig Discretionary Ligatures Join the glyph names of the components with an underscore (‘_’),

for example, f_odieresis.

hlig Historical Ligatures Ligatures with longs, or with a ‘.hlig’ or ‘.hist’ suffix.

rlig Required Ligatures Add ‘.rlig’ to the ligature name. Also triggered by lam_alef-ar,

lam_alefHamzaabove-ar, lam_alefHamzabelow-ar,

lam_alefMadda-ar, lam_alef-ar.fina,

lam_alefHamzaabove-ar.fina, lam_alefHamzabelow-ar.fina,

lam_alefMadda-ar.fina, lam_alefWasla-ar,

lam_alefWasla-ar.fina.

c2sc Small Capitals

from Capitals

Add ‘.sc’, ‘.c2sc’, or ‘.smcp’ to the glyph name. For separate sets

for ‘c2sc’ and ‘smcp’, use ‘.c2sc’ for uppercase glyph names and

‘.smcp’ for lowercase glyph names.

smcp Small Capitals Add ‘.sc’ or ‘.smcp’ to the glyph name.

c2pc Petite Capitals

from Capitals

Add ‘.pc’, ‘.c2pc’, or ‘.pcap’ to the glyph name.

pcap Petite Capitals Add ‘.pc’ or ‘.pcap’ to the glyph name.

sups Superscript Add ‘.sups’ to the glyph name. Or extend figure names with

superior, without the period, for example, onesuperior.

subs Subscript Add inferior, ‘.sinf’ or ‘.subs’ to the glyph name. If the font does

not differentiate between subscript and scientific inferior, use one

set of ‘.subs’ glyphs, and Glyphs will create both features with it.

sinf Scientific Inferiors Add inferior, ‘.sinf’ or ‘.subs’ to the glyph name.

Appendix Glyphs 3 Handbook, October 2021 234

afrc Alternative Fractions Add figures, slash, and any of these nut fraction glyphs to the

font: oneovertwo, zerooverthree, oneoverthree, twooverthree,

oneoverfour, threeoverfour, oneoverfive, twooverfive,

threeoverfive, fouroverfive, oneoversix, fiveoversix, oneoverseven,

twooverseven, threeoverseven, fouroverseven, fiveoverseven,

sixoverseven, oneovereight, threeovereight, fiveovereight,

sevenovereight, oneovernine, twoovernine, fourovernine,

fiveovernine, sevenovernine, eightovernine, oneoverten,

threeoverten, sevenoverten, nineoverten, oneovereleven,

twoovereleven, threeovereleven, fourovereleven, fiveovereleven,

sixovereleven, sevenovereleven, eightovereleven, nineovereleven,

tenovereleven, oneovertwelve, fiveovertwelve, sevenovertwelve,

elevenovertwelve, oneoveronehundred.

frac Fractions The frac feature is generated from the ‘.numr’, ‘.dnom’, and

fraction glyphs. If they are not present in the font, then the

feature will be composed of any pre-built fractions mentioned in

the ‘afrc’ above.

dnom Denominators Add ‘.dnom’ to the glyph name.

numr Numerators Add ‘.numr’ to the glyph name.

onum Oldstyle Figures Add ‘.osf’ (for proportional oldstyle figures) or ‘.tosf’ (for tabular

oldstyle figures) to the glyph name. Can be applied to other

characters as well, for example, currency signs.

tnum Tabular Figures Add ‘.tf’ (for tabular figures) or ‘.tosf’ (for tabular oldstyle figures)

to the glyph name. Can be applied to other characters as well, for

example, currency signs. Do not use the figure suffix for the

default figures; for example, if the default figures are proportional

oldstyle figures, do not use figures with a ‘.osf’ suffix.

pnum Proportional Figures Add ‘.osf’ (for proportional oldstyle figures) or ‘.lf’ (for

proportional lining figures) to the glyph name. Can be applied to

other characters as well, for example, currency signs.

lnum Lining Figures Add ‘.lf’ (for proportional lining figures) or ‘.tf’ (for tabular figures)

to the glyph name. Can be applied to other characters as well, for

example, currency signs.

ordn Ordinals Automatically built if default figures, numero, ordfeminine, and

ordmasculine are found in the font.

ornm Ornaments Add ‘.ornm’ to the glyph name of letters A–Z or a–z. Also, make

sure the bullet glyph is in the font.

Appendix Glyphs 3 Handbook, October 2021 235

hist Historical Forms Add ‘.hist’ to the glyph name.

case Uppercase Forms Add ‘.case’ to the glyph name or ‘.lf’ to the name of a figure.

cpsp Capital Spacing Add uppercase letters to the font, and choose Capital Spacing

from the plus menu in the bottom left of File → Font
Info… → Features.

locl Localized Forms Add ‘.loclXXX’ to the glyph name, where ‘XXX’ represents the

three letter language tag,¹ for example, ‘.loclENG’ for English, or

‘.loclSVE’ for Swedish. There also is a built-in list of glyphs that

trigger localizations:

idotaccent, i.TRK or i.loclTRK: trigger i substitutions for TRK,

AZE, CRT, KAZ, and TAT if i is present.

Scommaccent, Tcommaaccent, scommaaccent, and

tcommaaccent: trigger substitutions for ROM and MOL if

Scedilla, Tcedilla, scedilla, and tcedilla are present.

periodcentered.loclCAT (add a ‘.case’ suffix for uppercase;

L_periodcentered_L.loclCAT, l_periodcentered_l.loclCAT; or the

legacy Ldot, ldot: trigger ella geminada (punt volat) substitutions

for CAT if L, l, and periodcentered are also present in the font.

Iacute_J.loclNLD and iacute_j.loclNLD, or Jacute and jacute:

trigger accented ij substitutions for NLD if Iacute, iacute, J, and j

are present.

six-ar and numbers with ‘.urdu’ suffix (for example,

four-persian.urdu) will trigger URD localization for Persian.

cv01–

cv99

Character Variants Add ‘.cv01’ through ‘.cv99’ to the glyph name. Note that the

OpenType spec² recommends grouping related alternative glyphs

into the same feature. Use manual feature code if there are

multiple alternatives for a glyph; for example, place the following

code in a single ‘cv##’ feature:

sub a from [a.alt1 a.alt2 a.alt3].

ss01–

ss20

Stylistic Set Add ‘.ss01’ through ‘.ss20’ to the glyph name. Stylistic sets can

be named (see p. 121).

salt Stylistic Alternates By default, Glyphs will duplicate the ‘ss01’ feature in ‘salt’. Adobe

Illustrator and Adobe Photoshop make use of this feature in their

OpenType palettes.

1 docs.microsoft.com/typography/opentype/spec/languagetags

2 docs.microsoft.com/typography/opentype/spec/features_ae

Appendix Glyphs 3 Handbook, October 2021 236

https://docs.microsoft.com/typography/opentype/spec/languagetags
https://docs.microsoft.com/typography/opentype/spec/features_ae
https://docs.microsoft.com/typography/opentype/spec/languagetags
https://docs.microsoft.com/typography/opentype/spec/features_ae

swsh Swashes Add ‘.swsh’ to the glyph name.

titl Titling Add ‘.titl’ to the glyph name.

init Initial Forms Add ‘.init’ to the glyph name.

medi Medial Forms Add ‘.medi’ to the glyph name.

med2 Medial Forms Add ‘.med2’ to the glyph name. Used only with the Syriac script.

fina Terminal Forms Add ‘.fina’ to the glyph name.

fin2 Terminal Forms Add ‘.fin2’ to the glyph name. Used only with the Syriac script.

fin3 Terminal Forms Add ‘.fin3’ to the glyph name. Used only with the Syriac script

fwid Full Widths Add ‘.full’ or ‘.fullwidth’ to the glyph name, and emspace will

substitute space.

hkna Horizontal

Kana Alternates

Add ‘.hori’ to a Katakana or Hiragana glyph name.

hojo Hojo Kanji Forms Add ‘.hojo’ to the glyph name. Use it for JIS X 0212–1990 Kanji

Forms. The respective unsuffixed default glyphs should be

JIS X 0213: 2004 shapes.

hwid Half Widths Add ‘.half’ to the glyph name, end enspace will substitute space.

ital Italics Add ‘.italic’ to the glyph name.

pkna Proportional Kana Add ‘.proportional’ to a Katakana or Hiragana glyph name.

pwid Proportional Widths Add ‘.proportional’ to the glyph name.

qwid Quarter Widths Add ‘.qartwidth’ to the glyph name.

ruby Ruby Notation Forms Add ‘.ruby’ to the glyph name.

twid Third Widths Add ‘.thirdwidth’ to the glyph name.

vkna Vertical

Kana Alternates

Add ‘.vert’ to a Katakana or Hiragana glyph name.

vrt2 Vertical Alternates

and Rotation

Add ‘.vert’ to the glyph name.

abvs Above-base

Substitutions

Triggered by certain base and mark combinations in

South Asian scripts.

akhn Akhands Triggered by a number of letter and ligature glyphs in

South Asian scripts.

blwf Below Base Forms Triggered by halants and ‘.below’ glyphs in combination with a

range of other glyphs in South Asian scripts.

Appendix Glyphs 3 Handbook, October 2021 237

blws Below-base

Substitutions

Triggered by certain letter combinations in South Asian scripts,

such as Gujarati letters with a ‘.straight’ suffix or specific halant

combinations in Oriya.

cjct Conjunct Forms Triggered by conjunct clusters in South Asian scripts.

half Half Forms Triggered by half-form glyphs ending in Halfform in conjunction

with halant in South Asian scripts.

nukt Nukta Forms Triggered by nukta ligatures ending in Nukta and the script

abbreviation, in conjunction with the same glyphs without nukta,

in South Asian scripts.

pref Pre-base Forms Triggered by a halant in certain letter constellations in South and

Southeast Asian scripts.

pres Pre-base Substitutions Triggered by certain matra and conjunct constellations in

South Asian scripts. Define width variants with number suffixes,

for example, iMatra-deva.01 through ‘iMatra-deva.20’, and the

feature generator will pick the appropriate width variant for

each conjunct.

psts Post-base

Substitutions

Triggered by a halant glyph in combination with script-specific

base and matra constellations, such as eMatra-kannada with

‘.base’ and ‘.base.e’ glyphs in Kannada. Applies to South Asian

scripts only.

rkrf Rakar Forms Triggered by rakar ligatures in conjunction with the isolated

glyphs and halant in Devanagari, Gujarati, and Malayalam.

rphf Reph Forms Triggered by ra-deva, halant-deva and reph-deva, or an

analogous glyph structure in other South Asian scripts.

vatu Vattu Variants Triggered by the presence of specific lookups in the ‘rkrf’ feature.

ccmp Glyph Composition

and Decomposition

A wide range of glyph constellations in various scripts will trigger

the automatic creation of ‘ccmp’. For instance, idotless and

jdotless next to i, j and combining top marks will trigger a ‘ccmp’

lookup for Latin, which replaces the dotted with the dotless

glyphs before top marks.

mark Mark to Base

Positioning

Add anchors without underscores to base letters, like ‘top’ or

‘bottom’, and add combining marks (for example, acutecomb)

with underscore anchors (for example, ‘_top’ or ‘_bottom’) to

glyphs in the font. Their width is automatically set to zero at

export. This GPOS feature is not added to the Features tab but

calculated at export (see p. 121).

Appendix Glyphs 3 Handbook, October 2021 238

mkmk Mark to Mark

Positioning

Add combining marks (U+0300 and above) with both

underscore (for example, ‘_top’) and non-underscore anchors (for

example, ‘top’) to glyphs in the font. This GPOS feature is not

added to the Features tab but calculated at export (see p. 121).

17.4 CUSTOM PARAMETERS

Custom parameters provide additional settings and are identified

by their property and have a value. In this appendix, the

properties are printed in bold. The short description next to it

explains the respective values and the function of the parameter.

Parameters can be added to the Custom Parameters field of the

Font, Masters, and Exports tab of File → Font Info (Cmd-I).

Enabled parameters are displayed in black; disabled

parameters are displayed in gray. Quickly disable a parameter by

unchecking the checkbox to the left of its property name.

Custom parameters in camelcase (‘exampleName’) are defined

in the UFO specification and change the font information. In

contrast, capitalized ones (‘Example Name’) are specific to

Glyphs and usually change something in the font (for instance,

run a filter on the outlines). UFO parameters follow the naming

convention for Font Info properties outlined in the UFO 3

specification published in March 2012. Glyphs also makes use of

a simplified naming convention. Wherever possible, leave out the

prefix of the keyword. For example, instead of

‘openTypeNameDescription’, use ‘description’, or ‘blueScale’

instead of ‘postscriptBlueScale’. Both long and short versions

work side by side.

Add Class string Add an OpenType class to the font. The first word

must be the class name (without the at sign), followed by a

semicolon, and the new class code.

Add Feature string Add an OpenType feature to the font. The first

word must be the feature tag, followed by a semicolon, and the

new feature code. It will be put at the end of the list, so it may

not be in the right order.

Add Prefix string Add an OpenType prefix to the font. The first word

must be the prefix name, followed by a semicolon, and the new

prefix code.

ascender string Overrides the Ascender value for a certain script. The

values will be preferred for glyphs associated with the script in

the Edit view. As value, enter the lowercase name of the script,

Appendix Glyphs 3 Handbook, October 2021 239

followed by a colon and the value, e.g., cyrillic: 720. Use

multiple parameters for multiple scripts.

Autohint boolean Forces autohinting for the given instance,

regardless of the setting in the Export dialog

Axis Location list Remaps a master or instance from the internal

design space coordinates to values that are exposed in a variable

font user interface (‘external coordinates’). This can be useful if

your internal design space coordinates do not already adhere to

the suggestions of the OpenType specification.

Axis Mappings Creates an avar table by mapping internal design

coordinates to external coordinates exposed to the user. Put the

internal coordinate into the left column, and the external

coordinate in the right column. Or, add and edit values by

clicking and dragging in the chart. The range for the internal

coordinates is determined by the actual axis positions of the

masters in Font Info > Masters, whereas the range for external

coordinates is determined by the Axis Location parameters in

Font Info > Masters.

Note that axis mappings work only per axis, and cannot be

adjusted for different positions of other axes. This is a limitation

of the avar implementation, so you may have to compromise on

one of the mappings or pick an average value as the

target mapping.

blueFuzz integer BlueFuzz value. This corresponds to the Type 1/CFF

BlueFuzz field. From the Type 1 specification: The number

specifies the ‘units to extend (in both directions) the effect of an

alignment zone on a horizontal stem. If the top of a horizontal

stem is within BlueFuzz units (in character space) outside of a

top-zone, the interpreter will act as if the stem top were actually

within the zone; the same holds for the bottoms of horizontal

stems in bottom-zones. The default value of BlueFuzz is 1.

Adobe themselves state that BlueFuzz was intended to

compensate ‘for slightly inaccurate coordinate data.’ They

therefore suggest adjusting the alignment zones themselves as

well as explicitly setting BlueFuzz to zero. ‘Because a non-zero

value for BlueFuzz extends the range of alignment zones,

alignment zones must be declared at least (2 × BlueFuzz + 1) units

apart from each other. Therefore, a default BlueFuzz value of 1

implies that alignment zones should be at least 3 units apart from

each other.’

Appendix Glyphs 3 Handbook, October 2021 240

blueScale float PostScript BlueScale value. This corresponds to the

Type 1/CFF BlueScale field. Controls the font size until which

overshoot display is suppressed. Calculated as (pointsize at 300

dpi – 0.49) ÷ 240, e.g., 0.039625 for 10 points at 300 dpi. If you

do not set the value yourself, blueScale defaults to 0.037, which

corresponds to 9.37 points at 300 dpi or 39 pixels per em. This

means that, in this case, overshoots will be visible if at least 40

pixels are used to display an em. The maximum blueScale value

depends on the sizes of your alignment zones. The maximum

pointsize at 300 dpi is calculated as 0.49 + 240 ÷ largest

alignment zone size, which corresponds to a PPM (size in pixels

per em) of 2.04 + 1000 ÷ largest alignment zone size. The

product of (maximum pointsize – 0.49) × (largest alignment zone

height) must be less than 240.

For example, your largest zone is 21 units deep, thus: 2.04 + 1000

÷ 21 = 49.659, so the maximum PPM at which overshoots can be

suppressed is 49. The corresponding maximum pointsize is 0.49

+ 240 ÷ 21 = 11.919 points at 300 dpi, thus the blueScale value

cannot exceed (11.919 – 0.49) ÷ 240 = 0.04762.

blueShift integer PostScript BlueShift value. This corresponds to the

Type 1/CFF BlueShift field. Default value is 7. Extends for very

small glyph features beyond the font size indicated by blueScale.

Overshoots inside an alignment zone are displayed if: (a) they are

equal to or larger than BlueShift and (b) if they are smaller than

BlueShift but larger than half a pixel. E.g. blueScale is set to

suppress overshoots until 32 PPM, blueShift is 6, overshoots are

12 units deep. The stroke endings are slightly slanted and extend

5 units below the baseline. Between 0 and 32 PPM, the baseline

will be kept completely level. Starting at 33 PPM, the overshoots

will kick in. But the stroke endings will stay flat, because 5 units

do not cover half a pixel until 100 PPM.

capHeight string Overrides the Cap Height value for a certain script.

The values will be preferred for glyphs associated with the script

in the Edit view. As value, enter the lowercase name of the script,

followed by a colon and the value, e.g., adlam: 680. Use multiple

parameters for multiple scripts.

CJK Grid integer Number of rows and columns of a dotted-line grid

displayed when editing CJK glyphs. You can set number of rows

and columns separately with the CJK Grid Horizontal and CJK

Grid Vertical parameters. No grid is displayed when none of

these parameters are set. This parameter can be localized like the

Appendix Glyphs 3 Handbook, October 2021 241

CJK Guide parameter.

CJK Grid Horizontal integer Number of columns of a dotted-line grid

displayed when editing CJK glyphs. This parameter can be

localized like the CJK Guide parameter.

CJK Grid Vertical integer Number of rows of a dotted-line grid

displayed when editing CJK glyphs. This parameter can be

localized like the CJK Guide parameter.

CJK Guide string Percentage of inset for CJK guide squares, e.g., 10

for 10 percent. If set, Glyphs will display a second square guide

for the virtual body in CJK glyphs. You can localize the parameter

by preceding the value with the script name, e.g., kana:5. If you

want to define virtual bodies for more than one script, add more

CJK Guide parameters.

codePageRanges list Sets the appropriate bits of the

ulCodePageRange1 and ulCodePageRange2 entries in the OS/2

table. ‘This field is used to specify the code pages encompassed

by the font file in the cmap subtable for platform 3, encoding ID 1

(Microsoft platform).’ Every activated ‘code page is considered

functional. Each of the bits is treated as an independent flag and

the bits can be set in any combination. The determination of

“functional” is left up to the font designer, although character set

selection should attempt to be functional by code pages if at all

possible.’

Color Layers to SVG boolean If turned on, will produce an SVG table

with the color information stored in CPAL Color layers, or, in a

layered-font setup, from the masters that have a Master Color

parameter.

Color Palette for CPAL integer Index of the color palette (as defined

in the Color Palettes parameter) that is supposed to be used

for the CPAL OpenType table.

Color Palette for SVG integer Index of the color palette (as defined in

the Color Palettes parameter) that is supposed to be used for

the SVG OpenType table. Useful only in conjunction with the

Color Layers to SVG parameter.

Color Palettes list Define color palettes for export as a CPAL

OpenType table in ‘Microsoft-style’ CPAL/COLR color fonts. This

parameter allows Glyphs to display a preview of color glyphs in

Font and Edit view.

Compatible name Table boolean Exports a legacy name table as

Appendix Glyphs 3 Handbook, October 2021 242

expected by some Mac apps (in particular Quark XPress and

FontExplorer). It improves grouping of font styles in the font

menu of those apps, but may break functionality elsewhere,

especially Microsoft Office. Therefore, caution is advised in the

use of this parameter.

compatibleFullNames Sets name table ID 18, ‘Compatible Full Name’,

a Mac-only name which is intended to be preferred over ID 4

(‘Full Name’). If not set, the value for name table ID 18 is

calculated from Family Name plus space plus Style Name of the

respective instance. ‘On the Macintosh, the menu name is

constructed using the FOND resource. This usually matches the

Full Name. If you want the name of the font to appear differently

than the Full Name, you can insert the Compatible Full Name in

ID 18.’ Caution: since this may lead to a situation where Mac and

Windows use different full names for the same font, it may break

cross-platform interoperability of documents.

copyrights Copyright statement. Overrides the entry in the

Copyright field in the Font tab of the Font Info. Corresponds to

the OpenType name table ID 0, ‘Copyright notice’.

cvt Table string List of values for the cvt (control value table). When

you open a TTF in Glyphs, the application will store the existing

cvt values in this parameter. This is intended to preserve existing

TT hinting for reexporting, and certainly not to be edited

manually. Remove this parameter if you want to do your own

TrueType instructioning.

Decompose Components boolean Decompose all

components on export

Decompose Components in Variable Font boolean When exporting

a (TT-based) variable font, all components will be decomposed to

outlines. This option is intended to circumvent a CoreText

rendering bug in macOS versions prior to Mojave 10.14.5, which

affected the spacing of composite glyphs with changing LSB

values under certain circumstances. Since the resulting variable

font contains no more components, its file size can be expected

to increase dramatically.

Decompose Glyphs list At export, decomposes the composite glyphs

listed. This can be useful if you want to avoid changing of

composites when one of the components is being changed with

the Rename Glyphs parameter.

Default Layer Width integer Newly created glyphs and layers will

Appendix Glyphs 3 Handbook, October 2021 243

have the specified width rather than the default 600 units, or

1000 units for CJK glyphs, or 200 units for corner components. If

you prefix the value with a (lowercase) script name and a colon,

the specified layer width will only be applied to glyphs of that

script, e.g., cyrillic: 400 or adlam: 450. Add multiple

parameters for multiple scripts.

descender string Overrides the Descender value for a certain script.

The values will be preferred for glyphs associated with the script

in the Edit view. As value, enter the lowercase name of the script,

followed by a colon and the value, e.g., arabic: -300. Use

multiple parameters for multiple scripts.

descriptions Description of the font. Corresponds to the OpenType

name table ID 10: ‘description of the typeface. Can contain

revision information, usage recommendations, history,

features, etc.’

Design Grid string Number of rows and columns of a dotted-line grid.

Mostly used for CJK design. It can take three values:

[script:]horizontal,vertical

designers Name of the designer. Overrides the Font Info > Font >

Designer entry for the given instance. Corresponds to the

OpenType name table ID 9, ‘name of the designer of the typeface.’

designerURL string The URL of the designer. Overrides the Font Info

> Font > Designer URL entry for the given instance. Corresponds

to the OpenType name table ID 12, ‘URL of typeface designer

(with protocol, e.g., http://, ftp://).’

Disable autohinting for glyphs list Excludes listed glyphs from the

PostScript autohinting at export time. (TT autohinting cannot be

disabled on a per-glyph basis.) This can be useful if some glyphs

do not lend themselves for hinting, e.g., ornaments.

Disable Masters list Disables all specified masters. Intended mainly

for specific production workflows, or for testing purposes, e.g., to

see if interpolation still behaves as expected if you leave out one

of the intermediate masters.

Disable Subroutines boolean If set, CFF outline subroutinization is

disabled when the font is exported. Use this (a) when the font has

complex outlines with many nodes and does not export at all, or

(b) for testing purposes when the font has many glyphs, e.g., a

CJK font, and takes too long to compile every time you export.

DisableAllAutomaticBehaviour boolean Will disable most of the

Appendix Glyphs 3 Handbook, October 2021 244

automatic stuff on export.

reordering .notdef and space

zero widths for nonspacing marks

Don’t use Production Names boolean If checked, Glyphs will not

automatically rename glyphs of the final font file according to the

internal glyph database, but export the current glyph names.

Some applications and systems, amongst which the text engine

of OS X 10.4, expect the AGL naming scheme, though. This is

equivalent to the File > Font Info > Other Settings > Use Custom

Naming setting, and intended for users who want to employ their

own custom naming scheme.

EditView Line Height float Sets the line height for text set in an Edit

tab. Useful if you have unusual vertical metrics, and the default

leading seems inappropriate. Has no effect on the exported

font file.

Elidable STATAxis Value Name string Declares the style name of the

instance as elidable for the axis specified in the parameter’s value.

As value, use the four-letter tag of the respective axis. Typically,

you will add this parameter in the regular style, and you will add

one for each axis for which the name is an elidable display string.

Example: In a two-axis setup, an instance called Regular has two

Elidable STAT Axis Value Name parameters, one with wght and

one with wdth as parameter values. A display string is deemed

elidable if it is left out when combined with other display strings.

Usually this is the case for default-style names like ‘Regular’,

‘Normal’, or the like. The semibold weight combined with regular

width is usually just called ‘Semibold’, not ‘Semibold Regular’; or

the normal weight in combination with the italic style is simply

called ‘Italic’, not ‘Regular Italic’. Thus, the display name ‘Regular’

is considered elidable.

Enforce Compatibility Check boolean Forces compatibility checks

between all masters. Compatibility is only checked for a pair of

masters if they are both required for interpolating one of the

instances defined in File > Font Info > Instances. Useful if you

have no instance between certain masters, but still need to keep

them compatible, e.g., for a variable font.

Export AAT boolean Toggles the export of Apple Advanced

Typography (AAT) instructions as entered in File > Font Info >

Features > Prefix > morx. If morx instructions are present in Font

Info, they will be compiled into a morx table by default. This

Appendix Glyphs 3 Handbook, October 2021 245

parameter is intended as an option to prevent its export, and thus

create a pure OpenType font.

Export COLR Table boolean Toggles the export of CPAL and COLR

tables. If all conditions are met, CPAL and COLR tables will be

compiled and exported by default, though. This parameter is

intended as an option to prevent their export.

Export Folder string Adds a subfolder to the default export

destination. Please make sure to use only characters that are valid

in folder names.

Export Glyphs list Exports all glyphs listed, regardless of whether the

glyph was set to export or not.

Export kern Table boolean On export, will write an old-style kern

table in addition to the kern feature in the GPOS table. Only

affects in TrueType exports (i.e., .ttf or TT-flavored webfonts). All

group kerning will be expanded into all possible singleton pairs.

This means that you will have to subset before using this

parameter, otherwise you risk a table overflow. Use of this

parameter is strongly discouraged, and only makes sense in rare

edge cases where support of defunct or legacy software is

necessary. Only use it if you know what you are doing.

Export Mac Name Table Entries boolean Control if Macintosh name

table entries are exported (they are by default). So this is meant

to disable the Macintosh names.

Export morx Table boolean Inserts a morx (‘extended glyph

metamorphosis’) AAT table into the exported font. Takes the

contents of a prefix with the name morx in File > Font Info >

Features, written in MIF code (metamorphosis input file). For this

to work, the ftxenhancer command line tool of the Apple Font

Tools must be installed. For more information, refer to the

documentation included with the Apple Font Tools.

Export OpenType boolean Toggles the export of most OpenType

tables. If disabled, and if morx data is entered in File > Font Info >

Features > Prefix, will export a pure AAT font.

Export sbix Table boolean Toggles the export of an sbix table. If all

conditions are met, an sbix table will be compiled and exported

by default, though. This parameter is intended as an option to

prevent its export.

Export STAT Table boolean Toggles the export of the STAT table. A

STAT table will be compiled and exported by default, though. This

Appendix Glyphs 3 Handbook, October 2021 246

parameter is intended as an option to prevent its export.

Export SVG Table boolean Toggles the export of an SVG table. An SVG

table will be compiled and exported by default, though. This

parameter is intended as an option to prevent its export.

Family Alignment Zones list This parameter can help create a more

consistent screen appearance at low resolutions, even if the

overshoots differ in the individual weights. It is a good idea to

reduplicate the alignment zones of the most important font in

your family, usually of the Regular or Book instance. A rasterizer

will then try to align all weights if the height difference between

the individual weight and the family alignment is less than

one pixel. Important: For this mechanism to work, family

alignment zones must be compatible with the alignment zones

set up in the masters.

familyNames Font family name. Overrides the entry in the Family

Name field in the Font section of the Font Info. Corresponds to

the OpenType name table IDs 1 and 4. Used to calculate IDs

3, 4 and 6.

Feature for Feature Variations string Define the OpenType feature

into which glyph variant substitutions (a.k.a. ‘Bracket tricks’) are

written in OpenType variable fonts. Default is rvrn.

fileName string Name for the font file, without the dot suffix, i.e.,

without .otf, etc. Gives you the chance to export two versions of

the same font style name without the second file overwriting the

first one.

Filter string Triggers Glyphs filters or app functions in an instance,

after decomposition of composite glyphs. The values for the

built-in filters are as follows:

AddExtremes

Autohinting

HatchOutlineFilter; OriginX: x; OriginY: y; StepWidth: distance;

Angle: angle; Offset: thickness

OffsetCurve; x; y; makestroke; position/auto

RemoveOverlap

Roughenizer; segmentlength; x; y; angle

RoundCorner; radius; visualcorrection

RoundedFont; stem

Appendix Glyphs 3 Handbook, October 2021 247

Transformations; LSB: ± shift*; RSB: ±shift*; Width: ±shift;

ScaleX: percent; ScaleY: percent; Slant: degrees; SlantCorrection:

bool; OffsetX: amount; OffsetY: amount; Origin: select

Replace all words in italics with your values: The boolean values

(makestroke, visual correction, bool) are 1 for yes and 0 for no.

The value for position/auto must be a floating point number

where 0.0 represents 0%, and 1.0 stands for 100%, or the string

auto for Auto Stroke. The stem value in the RoundedFont syntax

is optional. The select value in the Transformations syntax can be

a number from 0 to 4, representing the five options displayed in

Filter > Transformations > Transform > Origin: cap height (0), half

cap height (1), x-height (2), half x-height (3), baseline (4).

If you want a filter to be applied only to some glyphs, add

include: or exclude:, followed by space- or comma-separated

glyph names, e.g., RemoveOverlap; exclude:a,b,c.

If you are using third-party filters, refer to their documentation

for the parameter string. In particular, the include and exclude

options may not be available.

If you want to apply filters before decomposition, use these

values with a PreFilter parameter.

fontName !dont Localize

fpgm Table Assembly string Assembly code for the fpgm (font

program) table. When you open a TTF in Glyphs, the application

will store the existing fpgm code in this parameter. This is

intended to preserve existing TT hinting for reexporting, and

certainly not to be edited manually. Remove this parameter if you

want to do your own TrueType instructioning.

fsType list A list of bit numbers indicating the embedding type. The

bit numbers are listed in the OpenType OS/2 specification.

Corresponds to the OpenType OS/2 table fsType field. ‘Type flags.

Indicates font embedding licensing rights for the font.

Embeddable fonts may be stored in a document. When a

document with embedded fonts is opened on a system that does

not have the font installed (the remote system), the embedded

font may be loaded for temporary (and in some cases, permanent)

use on that system by an embedding-aware application.

Embedding licensing rights are granted by the vendor of the font.

The OpenType Font Embedding DLL Specification and DLL

release notes describe the APIs used to implement support for

OpenType font embedding and loading. Applications that

Appendix Glyphs 3 Handbook, October 2021 248

implement support for font embedding, either through use of the

Font Embedding DLL or through other means, must not embed

fonts which are not licensed to permit embedding. Further,

applications loading embedded fonts for temporary use (see

Preview & Print and Editable embedding below) must delete the

fonts when the document containing the embedded font is

closed.’ You can set fsType to one of these five states:

Installable: ‘Fonts with this setting indicate that they may be

embedded and permanently installed on the remote system by

an application. The user of the remote system acquires the

identical rights, obligations and licenses for that font as the

original purchaser of the font, and is subject to the same end-user

license agreement, copyright, design patent, and/or trademark as

was the original purchaser.’

Forbidden: ‘Restricted License embedding: Fonts that have only

this bit set must not be modified, embedded or exchanged in any

manner without first obtaining permission of the legal owner.

Caution: For Restricted License embedding to take effect, it must

be the only level of embedding selected.’

Editable: ‘When this bit is set, the font may be embedded but

must only be installed temporarily on other systems. In contrast

to Preview & Print fonts, documents containing Editable fonts

may be opened for reading, editing is permitted, and changes

may be saved.’

Preview & Print: ‘When this bit is set, the font may be embedded,

and temporarily loaded on the remote system. Documents

containing Preview & Print fonts must be opened “read-only;” no

edits can be applied to the document.’

Subsetting forbidden: ‘When this bit is set, the font may not be

subsetted prior to embedding. Other embedding restrictions

also apply.’

gasp Table Sets the gasp table (‘grid-fitting and scan-conversion

procedure’) for TrueType fonts. It controls the two PPM

thresholds at which the recommended on-screen rendering

behavior changes. The gasp table contains rendering

recommendations for both a traditional grayscale and a

ClearType subpixel renderer. However, keep in mind that a

renderer may ignore the data stored herein.

‘This table contains information which describes the preferred

rasterization techniques for the typeface when it is rendered on

Appendix Glyphs 3 Handbook, October 2021 249

grayscale-capable devices. This table also has some use for

monochrome devices, which may use the table to turn off hinting

at very large or small sizes, to improve performance.’ The default

threshold sizes are 8 and 20 PPM. Because there are two

thresholds, three ranges can be differentiated:

no hinting & symmetric: Until the first threshold size, no

gridfitting is applied, and text is rendered with antialiasing

wherever possible. ‘At very small sizes, the best appearance on

grayscale devices can usually be achieved by rendering the

glyphs in grayscale without using hints.’

hinting & asymmetric: Between the two threshold sizes, the

renderer is recommended to apply gridfitting and suppress

grayscale. ‘At intermediate sizes, hinting and monochrome

rendering will usually produce the best appearance.’ In ClearType,

the matter is handled asymmetrically, i.e., vertical gridfitting is

applied, while horizontally, subpixel rendering is used.

hinting & symmetric: Beyond the thresholds, the rasterizer is

instructed to apply gridfitting and render the shapes in grayscale.

‘At large sizes, the combination of hinting and grayscale rendering

will typically produce the best appearance.’ The ClearType

rasterizer is instructed to apply symmetric smoothing, i.e., to use

anti-aliasing in y direction in addition to horizontal subpixel

rendering. ‘At display sizes on screen, […] this new improvement

of the Windows font renderer produces smoother and

cleaner-looking type’ (Now Read this: The Microsoft Cleartype

Font Collection, Microsoft 2004, p. 14).

Get Hints FromMaster string Defines which master is taken as source

of manual PS and TT hints, sometimes also referred to as the

‘main master’. Hinting in other masters will be ignored. If not set,

manually entered hints will be taken from the first master listed in

File > Font Info > Masters. This also affects treatment of

TTFStems and TTFZones parameters: only in the indicated

master, the UI for those parameters will provide the delta and

range buttons.

glyphOrder list Sets the order of glyphs in both the working file and

the final font. Glyph names need to be separated by newlines.

You can copy and paste the content of a List Filter. Glyphs not

listed but still in the font will be appended after listed glyphs, in

the default order that Glyphs employs.

Grid Spacing integer Set the coordinate precision for the resulting

Appendix Glyphs 3 Handbook, October 2021 250

CFF font, in font units. The value corresponds to the quotient of

the Grid Spacing value divided by the Subdivision value in File >

Font Info > Other Settings. At export time though, any Grid

Spacing value smaller than 1.0 will result in coordinate precision a

hundred times finer than the default unit-grid rounding. In other

words, all parameter values smaller than 1 are equivalent to 0.01.

The purposes of this parameter is to avoid too coarse rounding of

point coordinates in very thin interpolations. Any Grid Spacing

value equal to or larger than 1.0 will result in grid-unit rounding.

In other words, it any value greater than 1.0 is equivalent to 1.0.

The parameter has no effect on TrueType outlines, which cannot

have higher coordinate precision.

Hangul Composition Groups list Defines composition groups for

Hangul type design. Pick a key Jamo glyph and similarly

formatted variants for automated composition of complex

Hangul composites.

HasWWS Names boolean Sets bit 8 of the fsSelection entry in the

OS/2 table: According to the OpenType specification, this bit

indicates that ‘the font has name table strings consistent with a

weight/width/slope family without requiring use of “name” IDs 21

and 22.’ This makes sense only if the naming of your font already

adheres to the WWS scheme.

hheaAscender integer Height of the ascender as stored in the hhea

(horizontal header) table. ‘Typographic ascent (distance from

baseline of highest ascender).’

The hhea vertical metrics are mainly in use on Mac apps,

including browsers on the Mac. Therefore, unless you have to

maintain backwards compatibility with legacy software, it is

recommended to keep the hhea values in sync with the typo*

values, and make sure that Use Typo Metrics (fsSelection bit

7) is switched on.

For a detailed discussion of vertical metrics, see the Vertical

Metrics tutorial.

hheaDescender integer A negative integer describing the depth of the

descender as stored in the hhea table. ‘Typographic descent

(distance from baseline of lowest descender).’ For a discussion of

the hhea values, see hheaAscender..

hheaLineGap integer The recommended interlinear whitespace as

stored in the hhea table. ‘Typographic line gap. Negative values

are treated as zero in some legacy implementations.’ For a

Appendix Glyphs 3 Handbook, October 2021 251

https://glyphsapp.com/tutorials/vertical-metrics
https://glyphsapp.com/tutorials/vertical-metrics

discussion of the hhea values, see hheaAscender.

Ignore Vertical Hints boolean In a TrueType export, will ignore all

stem hints that are linked to a vertical stem definition, as set forth

in a TTFStems parameter. Makes sense in exports intended for

subpixel rendering, or for webfont exports where you want to

keep the file size as small as possible. Only affects manual TT

hinting, does not apply to TTF Autohint or PS hinting.

Import Font Reference a different .glyphs file, and all glyphs of the

referenced file that are not in the host font, will be hot-linked, in

the order of their layers and masters, as if you had copied the

glyphs from one file to the other. The glyphs will be visible and

typeable in Font and Edit view, but locked. Useful for splitting

design work between multiple users, or sharing smart

components between files.

Import Master Reference a master in different .glyphs file, and it will

be hot-linked into the host file, as if you had added it into File >

Font Info > Masters. Interpolation values must be set compatibly

in both files. Add one parameter for each master you want

to hot-link.

Instance Preview list Changes the preview string of an instance in File

> Font Info > Instances from the default ‘Aang126’ to the glyph

names listed.

InterpolationWeightY float Vertical interpolation value. In an

instance, you can differentiate between interpolation along the x

axis and interpolation along the y axis by introducing this custom

parameter. For it to take effect, it must differ from the

interpolation weight of the instance. Be careful, as this can lead

to deformation in diagonals. We advice to keep the

InterpolationWeightY close to the normal Weight

interpolation value.

E.g., there are two masters at weight 20 and 100, and an instance

with a weight interpolation value of 50. The vertical stems look

correct, but the horizontals look too thin. They would look right

at 60, but then the verticals would appear too thick. So, you keep

your instance at 50, but add the custom parameter

InterpolationWeightY with a value of 60. Now, the vertical stems

(x coordinates) are still interpolated with 50, and the horizontals

(y coordinates) with 60.

isFixedPitch boolean Sets the isFixedPitch flag in the post table.

Indicates whether the font is monospaced. Software can use this

Appendix Glyphs 3 Handbook, October 2021 252

information to make sure that all glyphs are rendered with the

same amount of pixels horizontally at any given PPM size.

⚠️Danger: Will sync the width of all glyphs with the width of

the space glyph This can be overwritten by adding a .monospace

number value in the master settings.

italicAngle string Overrides the Italic Angle value in File > Font Info >

Masters either for a certain script or for the whole font. The

values will be preferred for glyphs associated with the script in

the Edit view. As value, enter the lowercase name of the script,

followed by a colon and the value, e.g., latin: 7. Use multiple

parameters for multiple scripts. The number must be an angle in

clockwise degrees from the vertical. Also useful for upright fonts

with an angle other than 0°, because macOS may interpret

non-zero angles as italic. Affects the CFF ItalicAngle, the post

italicAngle, the x offsets of the OS/2 subscript and superscript

values, as well as the hhea caretSlopeRise and

caretSlopeRun entries.

Keep Glyphs list List of glyph names for all glyphs that will be kept in

the exported font. All other glyphs will be discarded, and kerning

and automatic feature code will be updated accordingly. Useful

for webfont subsetting in order to achieve smaller file sizes

Can use the same wildcards and category searches as the

Remove Glyphs parameter. Uses of Remove Glyphs and Keep

Glyphs are mutually exclusive.

Keep Overlapping Components boolean If set, Glyphs does not

decompose composite glyphs with overlapping components,

such as in Ccedilla. Useful for post-production of TrueType fonts.

Has no effect on CFF exports.

Keep Transformed Components boolean Does not decompose

composite glyphs with transformed (horizontally or vertically

scaled, or vertically shifted) components. Useful for

post-production of TrueType fonts. For release-ready production,

we do not recommend using this parameter, as it may interfere

with TT hinting in affected glyphs. The parameter has no effect

on CFF exports.

Keep UI-Font Bounding Box boolean Prevents conjuncts from

stacking below in South Asian scripts, by altering the automated

feature code for the cjct feature accordingly. Useful for

intended use in environments where vertical stacking is limited,

e.g., in user interfaces, hence the name. Currently only

Appendix Glyphs 3 Handbook, October 2021 253

implemented for Oriya.

licenses License description. Corresponds to the OpenType name

table ID 13, the ‘description of how the font may be legally used,

or different example scenarios for licensed use. This field should

be written in plain language, not legalese.’

licenseURL string URL for the license. Corresponds to the OpenType

name table ID 14. ‘URL where additional licensing information can

be found.’ Make sure it starts with the protocol specification,

typically https://.

Link Metrics With First Master boolean If checked, keeps the

side-bearings and the kerning of the respective master (in which

the parameter is entered) in sync with the first master. In effect,

you only have to space and kern the first master. This is especially

useful for color fonts or fonts that should not change their

metrics throughout their weights.

Link Metrics With Master string Same as Link Metrics With First

Master (see above), except that it specifies the name of the

master to which kerning and spacing is linked to. If you use this

parameter, it is advisable to make sure that all masters have

unique names.

Local Interpolation string Apply different interpolation values for

specified glyphs. The string must contain a semicolon-separated

list of interpolation values for each axis, followed by another

semicolon, an include: statement and a comma-separated list

of glyph names. For a single-axis setup, a single interpolation

value suffices. E.g., 120; include: a, g, s uses interpolation

value 120 just for the glyphs a, g and s, while all other glyphs are

interpolated according to the interpolation value of the

respective instance.

MakeOTF Compatibility Mode boolean If checked, the font created

by Glyphs will have its OpenType Layout tables comparable to

that created by Adobe’s makeotf program. This can be useful

when the feature code for those tables was written with specific

makeotf behavior in mind, or if the font is meant to be used in

applications that rely on makeotf-compatible output.

manufacturers Manufacturer Name. Overwrites the Manufacturer as

set in Font Info > Font. Corresponds to the OpenType name table

ID 8, ‘Manufacturer Name’.

manufacturerURL string Manufacturer or Vendor URL. Overwrites

Appendix Glyphs 3 Handbook, October 2021 254

the Manufacturer URL as set in Font Info > Font. Corresponds to

the OpenType name table ID 11, ‘URL of font vendor (with

protocol, e.g., http://, ftp://). If a unique serial number is

embedded in the URL, it can be used to register the font.’

Master Background Color string Sets the canvas color of a master.

The canvas assumes the specified color when the respective

master is active in Edit view.

Master Background Color Dark string Like Master Background

Color, but for Dark Mode.

Master Color string Color used for the display of the filled outline of

the master in question. Useful also to preview layer fonts

(multiple fonts intended to be set on top of each other with

different colors). Only effective inside Glyphs, does not export

into the OpenType font file.

Master Color Dark string Like Master Color, but for Dark Mode.

Master Icon Glyph Name string Name of the glyph that is is to be

used for the respective master button displayed in the top left

corner of the font window when two or more masters are present

in File > Font Info > Masters.

Master Stroke Color string Color used for the display of outlines of

the master in question, visible when the Select All Layers tool

(Shift-V) is active. Only effective inside Glyphs, does not export

into the OpenType font file.

Master Stroke Color Dark string Like Master Stroke Color, but for

Dark Mode.

Name Table Entry string A custom entry for the OpenType name table.

The syntax is one of the following three:

nameID; nameString

nameID platformID; nameString

nameID platformID encID langID; nameString If not

specified, platformID will be assumed as 3, and successively,

encID as 1 (Unicode), and langID as 0×0049 (Windows English).

If only platformID is specified as 1, then both encID and langID

will be assumed as 0 (Mac Roman, and Mac English).

The nameID can be anything except 1, 2, 3, 5, and 6, which cannot

be set through this parameter. The platformID can either be 1

for Macintosh or 3 for Windows. The optional encID and langID

represent either Windows or Macintosh encoding and language

Appendix Glyphs 3 Handbook, October 2021 255

IDs, depending on the platformID. They must be numbers

between 0 and 65536, and can be entered in decimal, octal or

hexadecimal form. The AFDKO Syntax specification stipulates

that ‘decimal numbers must begin with a non-0 digit, octal

numbers with a 0 digit, and hexadecimal numbers with a 0x

prefix to numbers and hexadecimal letters a-f or A-F.’

note string Arbitrary note about the font. This is not exported in the

final OpenType font, only stored in the .glyphs file. Setting the

font note as a custom parameter is equivalent to setting it in File

> Font Info > Notes.

openTypeHheaAscender see hheaAscender (p. 251).

openTypeHheaDescender see hheaDescender (p. 251).

openTypeHheaLineGap see hheaLineGap (p. 251).

openTypeNameLicenseURL see licenseURL (p. 254).

openTypeOS2CodePageRanges see codePageRanges (p. 242).

openTypeOS2Panose see panose (p. 257).

openTypeOS2StrikeoutPosition see strikeoutPosition (p. 265).

openTypeOS2StrikeoutSize see strikeoutSize (p. 266).

openTypeOS2SubscriptXOffset see subscriptXOffset (p. 266).

openTypeOS2SubscriptXSize see subscriptXSize (p. 267).

openTypeOS2SubscriptYOffset see subscriptYOffset (p. 267).

openTypeOS2SubscriptYSize see subscriptYSize (p. 267).

openTypeOS2SuperscriptXOffset see superscriptXOffset (p. 267).

openTypeOS2SuperscriptXSize see superscriptXSize (p. 268).

openTypeOS2SuperscriptYOffset see superscriptYOffset (p. 268).

openTypeOS2SuperscriptYSize see superscriptYSize (p. 268).

openTypeOS2TypoAscender see typoAscender (p. 275).

openTypeOS2TypoDescender see typoDescender (p. 275).

openTypeOS2TypoLineGap see typoLineGap (p. 275).

openTypeOS2UnicodeRanges see unicodeRanges (p. 276).

openTypeOS2VendorID see vendorID (p. 279).

openTypeOS2WinAscent see winAscent (p. 281).

openTypeOS2WinDescent see winDescent (p. 282).

Optical Size string Builds the Optical Size OpenType feature (feature

tag ‘size’), with encoded size menu names for Mac and Windows.

Appendix Glyphs 3 Handbook, October 2021 256

Requires a string with five semicolon-separated values:

design size: size in decipoints (tenths of points) the font was

designed for;

subfamily identifier: arbitrary integer; different fonts with the

same number can be grouped together in an optical size

submenu, if the software supports it;

range start: decipoint size of the size above which the font is

supposed to be used for;

range end: decipoint size of the size until (and including) which

the font is supposed to be used for;

size menu name: submenu name for the optical size, e.g.,

‘Display’, ‘Subhead’, ‘Small’, or ‘Caption’.

Example: ‘100; 1; 69; 120; Ten’ will create a size feature that

specifies 10 points as the intended design size, the range in which

it is supposed to be used is 7 to 12 points, and the optical size

name is ‘Ten’. Other fonts that use 1 as subfamily identifier and

‘Ten’ as name, can be grouped together.

Optimize Variable Deltas boolean Will drop OpenType Variation

deltas from a contour if none of its nodes moves more than half a

unit. Default is on. Set this parameter to off in order to also keep

low-significant deltas.

panose list Once you click in the Value field, a dialog will appear that

allows you to determine the setting for each category in the

PANOSE specification. This corresponds to the ten ‘panose’ fields

in the OpenType OS/2 table. ‘This 10 byte series of numbers is

used to describe the visual characteristics of a given typeface.

These characteristics are then used to associate the font with

other fonts of similar appearance having different names. […]

The PANOSE values are fully described in the PANOSE

“greybook” reference, currently owned by Monotype Imaging.

The PANOSE definition contains ten digits each of which

currently describes up to sixteen variations. Windows uses

bFamilyType, bSerifStyle and bProportion in the font mapper to

determine family type. It also uses bProportion to determine if

the font is monospaced. If the font is a symbol font, the first byte

of the PANOSE number (bFamilyType) must be set to “pictorial.” ’

At the time of this writing, PANOSE is not required to make a

font work anywhere, and, to our knowledge, is hardly in use.

Point To Unit Ratio integer Integer number that defines how many

Appendix Glyphs 3 Handbook, October 2021 257

font units are equivalent to one DTP point. Determines the

export scale of PDFs, including artwork copied into the clipboard.

Useful for exchanging vector data with third-party drawing apps,

such as Affinity Designer or Sketch.

Post Table Type integer Version of the post table built into the

instance, the default is 2 for TTF, and 3 for CFF fonts.

postscriptBlueFuzz see blueFuzz (p. 240).

postscriptBlueScale see blueScale (p. 241).

postscriptBlueShift see blueShift (p. 241).

postscriptFontName string PostScript name of the font. Corresponds

to the OpenType name table ID 6. Should be ASCII-only, short

(for maximum backwards compatibility less than 30 characters

long), and no whitespace allowed, e.g., ‘MyFont-BoldCdIt’. Do

not confuse with postscriptFullName (see below).

‘The FontName generally consists of a family name (specifically,

the one used for FamilyName), followed by a hyphen and style

attributes in the same order as in the FullName. For compatibility

with the earliest versions of PostScript interpreters and with the

file systems in some operating systems, Adobe limits the number

of characters in the FontName to 29 characters. As with any

PostScript language name, a valid FontName must not contain

spaces, and may only use characters from the standard ASCII

character set. If abbreviations are necessary to meet the 29

character limit, the abbreviations should be used for the entire

family’ (Adobe Technote #5088).

Adobe recommends these abbreviations for style names:

Bd for Bold

Bk for Book

Blk for Black

Cm for Compressed

Cn for Condensed

Ct for Compact

Dm for Demi (prefix)

Ds for Display

Ex for Extended

Hv for Heavy

Ic for Inclined

Appendix Glyphs 3 Handbook, October 2021 258

It for Italic

Ks for Kursiv (German for: Italic)

Lt for Light

Md for Medium

Nd for Nord (style name introduced for Antique Olive)

Nr for Narrow

Obl for Oblique

Po for Poster

Rg for Regular

Sl for Slanted

Sm for Semi (prefix)

Su for Super

Th for Thin

Ult for Ultra (prefix)

Up for Upright

X for Extra (prefix)

postscriptFullName string Name to be used for the FullName field in

CFF table. This is the complete name of the font as it is supposed

to appear to the user, and is thus allowed to contain spaces, e.g.,

‘My Font Bold Condensed Italic’. Do not confuse with

postscriptFontName (see above).

Some systems match the family name ‘against the FullName for

sorting into family groups.’ Therefore, the family name ‘must

match the corresponding portion of the FullName, and be

suitable for display in font menus. All fonts that are stylistic

variations of a unified design should share the same FamilyName.

[…] The FullName begins with a copy of the FamilyName and is

completed by adding style attributes — generally in this sequence:

weight, width, slope, optical size’ (Adobe Technote #5088).

postscriptIsFixedPitch see isFixedPitch (p. 252).

postscriptUnderlinePosition see underlinePosition (p. 276).

postscriptUnderlineThickness see underlineThickness (p. 276).

postscriptUniqueID see uniqueID (p. 276).

preferredFamilyNames Typographic (a.k.a. ‘preferred’) family name.

Corresponds to name ID 16 in the OpenType name table. Setting

this parameter only makes sense if it is different from the Family

Appendix Glyphs 3 Handbook, October 2021 259

Name (name ID 1) as set in File > Font Info > Font.

‘The typographic family grouping doesn’t impose any constraints

on the number of faces within it, in contrast with the 4-style

family grouping (ID 1), which is present both for historical reasons

and to express style linking groups. If name ID 16 is absent, then

name ID 1 is considered to be the typographic family name.’

preferredSubfamilyNames Typographic (a.k.a. ‘preferred’) subfamily

name. Corresponds to name ID 17 in the OpenType name table.

Setting this parameter only makes sense if it is different from the

Style Name (name ID 2) as set in File > Font Info > Instances.

‘This allows font designers to specify a subfamily name within the

typographic family grouping. This string must be unique within a

particular typographic family. If it is absent, then name ID 2 is

considered to be the typographic subfamily name.’

PreFilter string Same as Filter, but applied before decomposition.

Only applies to static fonts.

prep Table Assembly string Assembly code for the prep (Pre-Program

or Control Value Program) table. When you open a TTF in Glyphs,

the application will store the existing prep code in this parameter.

This is intended to preserve existing TT hinting for reexporting,

and certainly not to be edited manually. Remove this parameter if

you want to do your own TrueType instructioning.

Preview Ascender float Master parameter for the distance between

baseline and the upper edge of the preview in font units. Useful

for scaling the preview at the bottom of the Edit View or in the

Preview Panel when you have large ascenders that would

otherwise be cut off. The default is 1000.

Preview Descender float Similar to Preview Ascender, a master

parameter for the distance between baseline and the lower edge

of the preview in font units. Defaults to winAscent if present, or

otherwise, the Descender value set in File > Font Info > Masters.

Propagate Anchors boolean Enable or disable the propagation of top

and bottom anchors in composites. This means that top and

bottom anchors in the base glyphs of components ‘shine through’

to the composite, unless an anchor with the same name is

present in the composite glyph. That way, they enable

mark-to-base and mark-to-mark attachment for the composite

without needing to add and manage additional anchors. Default

is on. Primary use for this parameter is for suppressing

generation of mark and mkmk rules for composites.

Appendix Glyphs 3 Handbook, October 2021 260

Reencode Glyphs list Takes a list of glyphname=unicodevalue pairs,

e.g., smiley=E100, logo=E101, etc. Assign multiple Unicode

values with a comma as separator, e.g., hyphen=002D,2010. The

parameter assigns the Unicode value to the glyph with the

specified name at export. Should the Unicode value in question

already be assigned to another glyph, the Unicode value of that

other glyph will be deleted, but all production names will remain

intact. It will remove a glyph’s Unicode assignment if the Unicode

value is left out, e.g., f_f_i= and f_f_j= will strip f_f_i and

f_f_j from their Unicode value.

Remove Classes list Prevents the export of the OpenType classes

mentioned in the list. Useful for removing manually written

classes when glyphs are removed from the font through the

subsetting parameters. Note that automatic classes are removed

automatically at export if the triggering glyphs are not in the font

anymore, e.g., because they were removed or renamed with

parameters.

Remove Features list Prevents the export of the OpenType features

mentioned in the list. Useful when a glyph name suffix triggers

Glyphs to generate a feature you do not want in the font, or you

just want to disable a manually added feature for an instance.

Note that automatic features are removed automatically at

export if the triggering glyphs are not in the font anymore.

Remove Glyphs list Will prevent the glyphs and groups of glyphs

mentioned in the list from being exported into the font.

Automatically generated OpenType features respect changes in

the glyph structure, e.g., if you remove all smallcap glyphs, then it

will not auto-generate the smcp or c2sc features. Useful for

subsetting. Per line, you can use:

glyph name: the full unabridged glyph name as it appears in Font

view. You can copy a list of glyph names by invoking the context

menu on a glyph selection and choosing Copy Glyph Names >

One per line.

wildcard: use an asterisk before, inside or after a

string. Examples:

*ogonek will find Aogonek, aogonek, Eogonek, eogonek, etc.

K* will find K, Kcommaaccent and K.ss01.

H*.ss01 will find H.ss01, Hbar.ss01 and Hcircumflex.ss01.

category: use the category=value syntax to match glyphs

Appendix Glyphs 3 Handbook, October 2021 261

dynamically. If value is a string, you can use wildcards. Possible

categories are:

name The glyph name, equivalent to the glyph name searches

described above.

unicode The first Unicode value of the glyph, e.g., unicode=03*

excludes all glyphs that have Unicode values between

0300 and 03FF.

note The note of the glyph, e.g., note=*delete* will remove all

glyphs that have the word delete in their glyph note.

script The writing system that is assigned to the glyph, e.g.,

script=thai will remove all Thai glyphs from the font. The

spelling of the script is case-sensitive and needs to be exactly as

displayed in Window > Glyph Info.

category The group the glyph belongs to as displayed in

Window > Glyph Info, e.g., category=Symbol will remove all

glyphs defined as symbol.

subCategory The subcategory as displayed in Window > Glyph

Info, e.g., subCategory=Lowercase will remove all lowercase

glyphs from the exported OpenType font.

production The production name the glyph is assigned at export.

leftMetricsKey, rightMetricsKey, widthMetricsKey,

topMetricsKey, bottomMetricsKey, vertWidthMetricsKey The

metrics key for LSB, RSB, width, top, bottom or vertical width,

e.g., widthMetricsKey=*.tf* removes all glyphs where the

width is synced with a tabular figure.

leftKerningGroup, rightKerningGroup, topKerningGroup,

bottomKerningGroup The kerning group of a glyph, e.g.,

leftKerningGroup=s removes all glyphs that have a left kerning

group called ‘s’.

colorIndex The color index of CPAL/COLR layers. E.g., assume

you defined a color palette with blue at color index 2, then

colorIndex=2 would remove all blue shapes from the exported

color font.

countOfLayers Number of layers a glyph has. E.g.,

countOfLayers=4 removes all glyphs that have 4 layers

(including the master layers).

mastersCompatible Whether the glyph is interpolatable through

all masters or not. E.g., mastersCompatible=0 removes all

Appendix Glyphs 3 Handbook, October 2021 262

incompatible glyphs from the export.

export Whether the glyph is set to export or not. This also

affects glyphs that are contained as components in others. E.g.,

export=0 will remove all non-exporting glyphs from the export,

including components if the referenced base glyph is not

exporting, as well as corners, caps and smart glyphs.

isAnyColorGlyph Whether the glyph is a COLR/CPAL, sbix, or

full color glyph or not, e.g., isAnyColorGlyph=0 removes all

non-color glyphs from the font.

isAppleColorGlyph Whether the glyph has an iColor layer for

the sbix table or not.

hasSpecialLayers Whether the glyph has a bracket or brace

layer or not, e.g., hasSpecialLayers=1 will remove all glyphs

with a bracket or brace layer.

Remove post names for webfonts boolean Removes glyph names in

the webfont export, resulting in smaller file sizes.

Remove Prefixes list Takes a list of names for OT feature prefixes as

defined in File > Font Info > Features. The code in the prefixes

will be kept from being compiled and inserted in the exporting

OpenType font.

Rename Glyphs list Will exchange the glyphs mentioned in the value

with each other. Takes a list of rename strings of the form

oldname=newname, e.g. e.bold=e, g.alt=g. The glyph

previously stored as newname will now be called oldname and

vice versa. The parameter will update composites that employ the

glyphs involved, update automatic features where necessary, and

also exchange the Exports attributes of glyphs. If you want to

avoid the export of one the glyphs, make sure that either their

Exports attributes are set accordingly, or use the Export Glyphs

parameter.

Replace Class string Replaces OpenType class code with custom code.

The first word must be the class name (without the at sign),

followed by a semicolon, and the new class code. Works only if

the class exists in File > Font Info > Features. This is only

necessary for manually set up classes. Automatically generated

classes update automatically.

Replace Feature string Replaces the content of an OpenType feature

with the code specified. The first four letters must be the feature

name (such as liga), followed by a semicolon and the new

Appendix Glyphs 3 Handbook, October 2021 263

feature code. Works only if the feature exists in File > Font Info

> Feature.

Replace Prefix string Replaces OpenType feature code listed under

File > Font Info > Features > Prefix. The value must consist of the

prefix name, exactly as entered in Font Info > Features, followed

by a semicolon and the replacement code.

ROS string Sets the ROS (Registry, Ordering, Supplement) for fonts

with a Character To Glyph Index Mapping Table (cmap). Currently

available values are the public ROSes:

Adobe-CNS1-6

Adobe-GB1-5

Adobe-Japan1-3

Adobe-Japan1-6

Adobe-Korea1-2

Adobe-Identity-0 If you use Adobe-Identity-0, a GSUB table

will be generated from the available OpenType features.

Otherwise, the cmap and GSUB resources supplied by

Adobe are used.

From the Adobe CMap and CIDFont Files Specification,

Version1.0: ‘Both the CIDFont and the CMap must use CIDs from

compatible character collections. The identification of the

character collection is accomplished by placing version control

information into each CIDFont and CMap file. To identify a

character collection uniquely, three name components are

concatenated with a hyphen:

a registry name is used to identify an issuer of orderings,

usually Adobe;

an ordering name is used to identify an ordered character

collection; and,

a supplement number is used to indicate that the ordered

character collection for a registry, ordering, and previous

supplement has been changed to add new characters assigned

CIDs beginning with the next available CID.

These three pieces of information taken together uniquely

identify a character collection. In a CIDFont, this information

declares what the character collection is. In a CMap, this

information specifies which character collection is required for

compatibility. A CMap is compatible with a CIDFont if the

Appendix Glyphs 3 Handbook, October 2021 264

registry and ordering are the same. If the supplement numbers

are different, some codes may map to the CID index of 0.’

sampleTexts Sample text. Corresponds to the OpenType name table

ID 19. ‘This can be the font name, or any other text that the

designer thinks is the best sample to display the font in.’ This

sample text is displayed, for instance, by Apple Font Book, when

the font is selected in Sample view.

Save as TrueType boolean Exports the instance as TTF, regardless of

the settings in the Export dialog.

SBIX to SVG integer If set, exports the bitmaps built for an sbix font

in an SVG color table. The SVG table supports both bitmap and

vector images, and with this parameter you can duplicate the

sbix bitmap information into an equivalent SVG bitmap table,

making the font more compatible. Adding the Export sbix

parameter with a deactivated checkbox will export SVG only and

not include sbix in the instance in question.

Scale to UPM integer Scales the whole font to the supplied integer

value. This is useful for scaling to a UPM of 2048 (or a power of

two between 16 and 16,384) for TTF export, or if you are

designing in an UPM size other than the default 1000.

shoulderHeight integer A vertical metric value for Middle Eastern,

South Asian and Southeast Asian scripts. In glyphs of those

scripts, the shoulder height will be displayed as a vertical metric

line in Edit view instead of the x-height. The algorithm for

automatic creation of alignment zones also respects this value.

smallCapHeight integer A vertical metric for small caps. The

algorithm for automatic creation of alignment zones respects

this value. When a small cap glyph is displayed in Edit view and

metrics are set to show, the small cap height will be displayed

instead of the x-height.

strikeoutPosition integer ‘The position of the top of the strikeout

stroke relative to the baseline in font design units’.Corresponds to

the yStrikeoutPosition field in the OS/2 table. ‘Positive values

represent distances above the baseline; negative values represent

distances below the baseline. Aligning the strikeout position with

the em dash is suggested. Note, however, that the strikeout

position should not interfere with the recognition of standard

characters, and therefore should not line up with crossbars in

the font.’

Appendix Glyphs 3 Handbook, October 2021 265

strikeoutSize integer The size of the strike-out dash in units.

Corresponds to the yStrikeoutSize field in the OS/2 table. ‘This

field should normally be the thickness of the em dash for the

current font, and should also match the underline thickness.’

Style Name as STAT entry string For variable fonts, takes the instance

style name as combinable display string for an axis range. As

value, use the four-letter axis tag to which the display string

applies. Use this only in instances that are non-normal on one

axis and normal on all others. That is because the normal

attributes have elidable names and do not appear in the style

name (e.g., ‘Semibold’ or ‘Condensed’).

Example: In the Light instance, use this parameter with the value

wght, because Light is a value on the weight axis. The Light

instance is non-normal on the wght axis, but normal (i.e., not

condensed nor extended) on the wdth axis.

styleMapFamilyNames Family name used for RIBBI style mapping

(regular, italic, bold, bold italic). You can use this to create

subfamilies within larger font families. ‘Up to four fonts can share

the Font Family name, forming a font style linking group.’ Glyphs

uses the entries in Style Name field and in the Style Linking

section in the Instances tab of the Font Info for linking the four

individual weights.

styleMapStyleNames Localised Font Subfamily name. Corresponds

to the OpenType name table ID 2

styleNames Style Name or Font Subfamily Name. Corresponds to

OpenType name table ID 2.

‘The Font Subfamily name is used in combination with Font

Family name (name ID 1), and distinguishes the fonts in a group

with the same Font Family name. This should be used for style

and weight variants only.’

subscriptXOffset integer The horizontal offset for simulated subscript

typesetting, recommended to keep at zero for fonts with an italic

angle of zero. Corresponds to the subscriptXOffset field in the

OS/2 table.

‘The Subscript X Offset parameter specifies a font designer’s

recommended horizontal offset – from the glyph origin to the

glyph origin of the subscript’s glyph – for subscript glyphs

associated with this font. If a font does not include all of the

required subscript glyphs for an application, and the application

can substitute glyphs, this parameter specifies the recommended

Appendix Glyphs 3 Handbook, October 2021 266

horizontal position from the glyph escapement point of the last

glyph before the first subscript glyph. For upright glyphs, this

value is usually zero; however, if the glyphs of a font have an

incline (italic or slant), the reference point for subscript glyphs is

usually adjusted to compensate for the angle of incline.’

subscriptXSize integer The horizontal scale for simulated subscript

typesetting. Corresponds to the subscriptXSize field in the

OS/2 table.

‘If a font has two recommended sizes for subscripts, e.g.,

numerics and other, the numeric sizes should be stressed. This

size field maps to the em size of the font being used for a

subscript. The horizontal font size specifies a font designer’s

recommended horizontal size of subscript glyphs associated with

this font. If a font does not include all of the required subscript

glyphs for an application, and the application can substitute

glyphs by scaling the glyphs of a font or by substituting glyphs

from another font, this parameter specifies the recommended

nominal width for those subscript glyphs. For example, if the em

for a font is 2048 units and ySubScriptXSize is set to 205, then

the horizontal size for a simulated subscript glyph would be

1/10th the size of the normal glyph.’

subscriptYOffset integer The vertical offset for simulated subscript

typesetting, typically a positive number for going below the

baseline. Corresponds to the subscriptYOffset field in the

OS/2 table.

‘The Subscript Y Offset parameter specifies a font designer’s

recommended vertical offset from the glyph baseline to the glyph

baseline for subscript glyphs associated with this font. Values are

expressed as a positive offset below the glyph baseline. If a font

does not include all of the required subscript glyphs for an

application, this parameter specifies the recommended vertical

distance below the glyph baseline for those subscript glyphs.’

subscriptYSize integer The vertical scale for simulated subscript

typesetting. Corresponds to the subscriptYSize field in the

OS/2 table. See subscriptXSize for more details.

superscriptXOffset integer The horizontal offset for simulated

superscript typesetting, recommended to keep at zero for fonts

with an italic angle of zero. Corresponds to the

superscriptXOffset field in the OS/2 table. See

subscriptXOffset for more details.

Appendix Glyphs 3 Handbook, October 2021 267

superscriptXSize integer The horizontal scale for simulated

superscript typesetting. Corresponds to the superscriptXSize

field in the OS/2 table. See subscriptXSize for more details.

superscriptYOffset integer The vertical offset for simulated

superscript typesetting, typically a positive value for going below

the baseline. Corresponds to the superscriptYOffset field in

the OS/2 table. See subscriptYOffset for more details.

superscriptYSize integer The vertical scale for simulated superscript

typesetting. Corresponds to the superscriptYSize field in the

OS/2 table. See subscriptYSize for more details.

trademarks Trademark statement. Corresponds to the OpenType

name table ID 7. According to Microsoft, ‘this is used to save any

trademark notice / information for this font. Such information

should be based on legal advice. This is distinctly separate from

the copyright.’

TrueType Curve Error float Maximum deviance of the approximated

TrueType curve in units. Default is 0.6. A higher curve error allows

the TrueType converter to use fewer quadratic splines to

approximate the cubic splines of your design. This can result in a

significantly smaller glyf table (containing the quadratic outline

data), and smaller overall file size.

TrueType Keep GlyphOrder boolean Keeps the glyph order as it is in

the .glyphs file, except .notdef and space which always have to

be in the first two positions. If disabled (the default), the font will

resort the first four glyphs to: .notdef, NULL, CR, space. While

NULL and CR will only be reordered if they exist in the .glyphs file,

.notdef and space will be automatically generated if they are

missing. Use this parameter only if you know what you

are doing.

TTFAutohint binary path string File path to a precompiled

TTFAutohint binary that should be used instead of the built-in

TTFAutohint. This can be useful if you need to stick to a specific

version or want to employ a newer version of TTFAutohint than

Glyphs incorporates.

TTFAutohint control instructions string This allows you to specify

TTFAutohint control instructions. It is recommended to prepare

the control code in a separate file and then paste it into the value

of the parameter. Possible instructions are:

glyphnames left pointIDs offset

Appendix Glyphs 3 Handbook, October 2021 268

glyphnames right pointIDs offset

glyphnames nodir pointIDs

glyphnames touch pointIDs xshift x yshift y @ PPMs

glyphnames point pointIDs xshift x yshift y @ PPMs

Values for offset are optional and assumed as zero when

omitted. In the touch and point instructions, either or both of

the shifts can be specified. x and y must be between 0.0 and 1.0.

glyphnames can be one or more comma-separated glyph names,

specified as production names (i.e., the names as they are written

into the font file). PPMs can be a single PPM size, a size range of

PPMs with a hyphen, or a comma-separated list of sizes and size

ranges. A line that starts with a hashtag \# is considered a

comment and therefore ignored. The instructions can be

abbreviated with their respective first letters, e.g., ‘right’ can be

written as ‘r’.

TTFAutohint options string Specifies commandline options for the

TrueType autohinter ‘ttfautohint’. Use the dialog sheet to

configure your settings:

Hint Set Range: the PPM range for which the instructions will be

optimized. Large ranges can cause huge file sizes.

Default Script: ‘default script for OpenType features’.

Fallback Script: ‘default script for glyphs that can’t be mapped to

a script automatically’.

Hinting Limit: the PPM size ‘where hinting gets switched off’.

Default is 200 pixels, must be larger than the maximum of the

hint set range. Pixel sizes up to this size use the hinting

configuration for the range maximum.

Fallback StemWidth: ‘the horizontal stem width (hinting) value

for all scripts that lack proper standard characters in the font.

The value is given in font units and must be a positive integer. If

not set, ttfautohint uses a hard-coded default (50 units at 2048

units per em, and linearly scaled for other UPM values, for

example 24 units at 1000 UPM).’ For symbol fonts, you also need

to specify a Fallback Script ‘to set up a script at all’.

x-Height Increase Limit: from this pixel size down to 6 PPM, the

x-height is more likely to be rounded up. Default is 14 PPM.

‘Normally, ttfautohint rounds the x height to the pixel grid, with a

slight preference for rounding up. (…) Use this flag to increase the

Appendix Glyphs 3 Handbook, October 2021 269

legibility of small sizes if necessary.’ Set to 0 if you want to switch

off rounding up the x-height.

x-Height Snapping Exceptions: ‘list of comma-separated PPM

values or value ranges at which no x-height snapping shall be

applied’, e.g., ‘8, 10-13, 16’ disables x-height snapping for sizes 8,

10, 11, 12, 13, and 16. An empty string means no exceptions, and a

mere dash (‘-’) disables snapping for all sizes.

Adjust Subglyphs (formerly known as Pre-Hinting): If enabled,

‘makes a font’s original bytecode be applied to all glyphs before it

is replaced with bytecode created by ttfautohint. This makes only

sense if your font already has some hints in it that modify the

shape even at EM size (normally 2048px); in particular, some

CJK fonts need this because the bytecode is used to scale and

shift subglyphs (hence the option’s long name). For most fonts,

however, this is not the case.’

Dehint: Disables all TT hinting, and therefore overrides all other

options. Use only for testing.

Detailed Info: if enabled, adds ‘ttfautohint version and command

line information to the version string or strings (with name ID 5)

in the font’s name table. This option is mutually exclusive’ with the

No Autohint Info option (see below). ‘If neither is set, the string

“ttfautohint (vNNN)” gets added to the name table’, NNN being

the ttfAutohint version.

Hint Composites: ‘By default, the components of a composite

glyph get hinted separately. If this flag is set, the composite glyph

itself gets hinted (and the hints of the components are ignored).

Using this flag increases the bytecode size a lot, however, it might

yield better hinting results – usually, it doesn’t.’ Also adds a ghost

component called .ttfautohint to all glyphs. ‘Direct rendering of

the .ttfautohint subglyph (this is, rendering as a stand-alone

glyph) disables proper hinting of all glyphs in the font! Under

normal circumstances this never happens because .ttfautohint

doesn’t have an entry in the font’s cmap table.’ But it can happen,

e.g., in a glyph overview.

Ignore Restrictions: ‘By default, fonts that have bit 1 set in the

fsType field of the OS/2 table are rejected. If you have a

permission of the font’s legal owner to modify the font, specify

this command line option.’

No Autohint Info: if checked, prevents adding ‘ttfautohint version

and command line information to the version string or strings

Appendix Glyphs 3 Handbook, October 2021 270

(with name ID 5) in the font’s name table.’

Symbol Font: ‘Process a font that ttfautohint would refuse

otherwise because it can’t find a single standard character for any

of the supported scripts. For all scripts that lack proper standard

characters, ttfautohint uses a default (hinting) value for the

standard stem width instead of deriving it from a script’s set of

standard characters (for the latin script, one of them is character

‘o’). Use this option – usually in combination with the Fallback

Script and/or Fallback Stem Width option – to hint symbol or

dingbat fonts or math glyphs, for example.’

ttfa table: Adds an OpenType table ‘called TTFA to the output

font that holds a dump of all parameters. In particular, it lists all

ttfautohint control instructions (which are not shown in the name

table info). This option is mainly for archival purposes so that all

information used to create a font is stored in the font itself. Note

that such a TTFA table gets ignored by all TrueType rendering

engines. Forthcoming versions of the ttfautohint front-ends will

be able to use this data so that a font can be processed another

time with exactly the same parameters, thus providing a means

for round-tripping fonts.’

Windows Compatibility: ‘This option makes ttfAutohint add two

artificial blue zones, positioned at the winAscent and winDescent

values (from the font’s OS/2 table). The idea is to help ttfAutohint

so that the hinted glyphs stay within this horizontal stripe since

Windows clips everything falling outside.’ Use this option if

clipping occurs in Microsoft Windows and you cannot adjust

winAscent and winDescent instead (which would usually be the

better option). In combination with ‘-’ as value for xHeight

Snapping Exceptions (see above), it should both ‘suppress any

vertical enlargement’ and ‘prevent almost all clipping.’

Strong Stems: specifies which algorithm to use ‘for computing

horizontal stem widths and the positioning of blue zones’ for the

three rendering targets: Grayscale (Android), GDI ClearType (old

Windows versions including XP), DW ClearType (IE 9 and later,

and Windows 7 and later). If disabled, stems will be quantized:

‘Both stem widths and blue zone positions are slightly quantized

to take discrete values. For example, stem values 50, 51, 72, 76,

and 100 would become 50, 74, and 100 (or something similar).

More glyph shape distortion but increased contrast.’ If enabled,

stems will be strong: ‘Stem widths and blue zones are snapped

Appendix Glyphs 3 Handbook, October 2021 271

and positioned to integer pixel values as much as possible. This

gives high contrast, but glyph shape distortion can be significant.’

TTFBlueFuzz integer Much like PostScript’s BlueFuzz, extends the

range of TrueType alignment zones by the given amount in both

directions. Default and fallback value is 1. Only affects zones

defined in the TTFZones parameter.

TTFDontPreserveDiagonals boolean In manual TT hinting, the

apparent angles of slanted stems are preserved, even when

another stem crosses it and threatens to make it appear broken.

E.g. in an uppercase A, the two diagonal stems are preserved in

their angles, even though a (hinted) crossbar interrupts the

outline in their middles. With this parameter, stem angles are not

preserved. Technically, the parameter suppresses (projections

onto) freedom vectors. Useful for making TT hinting smaller, e.g.,

for webfont export.

TTFMinimumDistance float Any hinted stem will be drawn with this

minimum length in pixels, no matter which PPM size, if it has a

stem hint applied to it. The default is 0.25. This value can be

important in small pixel sizes, where small parts are in danger of

disappearing.

TTFOvershootSuppressionBelowPPM integer The pixel size (PPM)

up to which overshoots are reliably flattened out. Only applies to

manual TT hinting, not ttfAutohint.

TTFStems list A list of stem definitions for TrueType manual hinting

only. When you click in the parameter value, a dialog sheet will

drop down. Use the gear menu to add or remove stem

definitions, or import the currently available horizontal PostScript

stems from the Horizontal Stems and Vertical Stems fields in File

> Font Info > Masters. For each stem, you can define an

orientation, a name and a width. In the main master, a delta and a

globe symbol will be shown in addition: they provide access to

dialogs for defining PPM deltas as well as a glyph filter for the

stem in question. Add stems by pressing on the plus button, and

remove a stem by selecting it and clicking the minus button.

Orientation: Switch between horizontal stem (e.g., for the

crossbars in e, f, t, or the top and bottom curves of o, c, e, a) and

vertical stem (e.g., for the vertical stems of h, m, n, u, or the left

and right curves of o) by clicking on the double arrow symbol.

Name: The stem name is arbitrary, but should be unique. Will

show up in the pop-up menu in the grey info box when the TT

Appendix Glyphs 3 Handbook, October 2021 272

Instructor tool (I) is active and a stem hint (S) is selected.

Width: The average size of the stem towards which the stems will

be rounded. Also, when applying the Autohint command from

the context menu of the TT Instructor tool (I), stems will be

identified with this size.

Deltas: PPM-specific size adjustments for the effective pixel-size

of a stem in an instance. In any PPM/instance field, click

repeatedly to switch between no change (blank field), size

increase (arrow up), size decrease (arrow down). The deltas are

only accessible in the first master, or the master defined in the

Get Hints From Master parameter.

Filter (Scope): Define the glyph scope of the stem by adding

logical filters. Click on the plus button to add additional filters,

and the minus button to remove a selected filter. Opt-click on the

plus button to add logical AND and OR operators for the

following (indented) conditions. Available filters are Name,

Category, Subcategory and Script. TrueType stems with a scope

will only be available in glyphs that fulfill the logical conditions of

its scope. Scopes are only accessible in the first master, or the

master defined in the Get Hints From Master parameter.

TTFZoneRoundingThreshold float Controls the likelihood of a

positive zone being pushed up a pixel. It takes a small decimal

number as value, typically something around 0.1 or 0.2. The value

is added to any positive zone position before rounding, and

added twice to the x-height zone (the one named ‘xHeight’ in the

TTFZones parameter). Default is 0.09375.

Example: At a certain font size, the smallcap zone ends up at

6.45 pixels, and the x-height at 5.25 pixels. Without any change,

the smallcap zone would round and snap to a height of 6 pixels,

while the x-height would end up with 5 pixels. If you set a value

of 0.2, the smallcap height ends up at (6.45+0.2=6.65≈) 7 pixels,

and the x-height at (5.25+2×0.2=5.65≈) 6 pixels.

TTFZones list A list of zone definitions for horizontal TrueType stems,

in manual TrueType hinting only. When you click in the parameter

value, a dialog sheet will drop down. Use the gear menu to add or

remove zone definitions, or import the currently available

PostScript zones from Alignment Zones field in File > Font Info >

Masters. For each zone, you can define a name, a position, a size

and an alignment. In the main master, a delta and a globe symbol

will be shown in addition: they provide access to dialogs for

Appendix Glyphs 3 Handbook, October 2021 273

defining PPM deltas as well as a glyph filter for the zone in

question. Add zones by pressing on the plus button, and remove

a zone by selecting it and clicking the minus button.

Name: The zone name is arbitrary, but should be unique. Will

show up in the pop-up menu in the grey info box when the TT

Instructor tool (I) is active and an align hint (A) is selected.

Position: Position of the zone, or ‘flat end’ of overshooting

shapes, similar to alignment zones in PostScript.

Size: Size of the zone, or distance from ‘flat end’ to the outermost

edge of overshooting shapes. Use positive values for top zones,

negative values for bottom zones. If the zone size is calculated to

be less than half a pixel in any given PPM size, any hinted shape

that reaches into the zone will be flattened to the same height.

Align: Link a zone to another zone with the Align option. If a

zone is aligned to another, the distance between the zone

positions is rounded and applied to the zone. This will result in

more consistent transitions when you step your font through

pixel sizes. Use this for heights that are very close to each other,

perhaps even overlapping, and may appear next to each other in

typesetting, and where it may be perceived as problematic if the

heights diverge too far in low-res pixel renderings, e.g., align the

small-cap height to the x-height. Aligned zones will be displayed

at the same height if the difference is less than half a pixel in a

given PPM size; and at least one pixel apart if the difference is

half a pixel or more.

Delta: PPM-specific position rounding for the effective pixel-size

of each zone in each instance. In any PPM/instance field, click

repeatedly to switch between no change (blank field), shifting up

(arrow up), shifting down (arrow down). The deltas are only

accessible in the first master, or the master defined in the Get

Hints From Master parameter.

Filter (Scope): Define the glyph scope of the stem by adding

logical filters. Click on the plus button to add additional filters,

and the minus button to remove a selected filter. Opt-click on the

plus button to add logical AND and OR operators for the

following (indented) conditions. Available filters are Name,

Category, Subcategory and Script. TrueType stems with a scope

will only be available in glyphs that fulfill the logical conditions of

its scope. Scopes are only accessible in the first master, or the

master defined in the Get Hints From Master parameter.

Appendix Glyphs 3 Handbook, October 2021 274

typoAscender integer The height of the ascenders in units.

Corresponds to the OpenType OS/2 table sTypoAscender field.

‘The typographic ascender for this font. This field should be

combined with the typoDescender and typoLineGap values to

determine default line spacing. This field is similar to the

hheaAscender field as well as to the winAscent field. However,

legacy platform implementations used those fields with

platform-specific behaviors. As a result, those fields are

constrained by backward-compatibility requirements, and they

do not ensure consistent layout across implementations. The

typoAscender, typoDescender and typoLineGap fields are

intended to allow applications to lay out documents in a

typographically-correct and portable fashion. The Use Typo

Metrics flag (fsSelection bit 7) is used to choose between

using sTypo* values or usWin* values for default line metrics. It is

not a general requirement that typoAscender - typoDescender

be equal to unitsPerEm. These values should be set to provide

default line spacing appropriate for the primary languages the

font is designed to support.

For CJK (Chinese, Japanese, and Korean) fonts that are intended

to be used for vertical (as well as horizontal) layout, the required

value for typoAscender is that which describes the top of the

ideographic em-box. For example, if the ideographic em-box of

the font extends from coordinates 0,-120 to 1000,880 (that is, a

1000 × 1000 box set 120 design units below the Latin baseline),

then the value of typoAscender must be set to 880. Failing to

adhere to these requirements will result in incorrect

vertical layout.

For a detailed discussion of vertical metrics, see the Vertical

Metrics tutorial.

typoDescender integer A negative integer describing the depth of the

descenders in units. Corresponds to the sTypoDescender field of

the OpenType OS/2 table.

‘The typographic descender for this font. This field should be

combined with the typoAscender and typoLineGap values to

determine default line spacing.’ See typoAscender for

more details.

typoLineGap integer The recommended whitespace between lines,

measured in units. Corresponds to the OpenType OS/2 table

sTypoLineGap field.

‘The typographic line gap for this font. This field should be

Appendix Glyphs 3 Handbook, October 2021 275

https://glyphsapp.com/tutorials/vertical-metrics
https://glyphsapp.com/tutorials/vertical-metrics

combined with the typoAscender and typoDescender values to

determine default line spacing.’ See typoAscender for

more details.

underlinePosition integer The suggested distance from the baseline

to the top of the underline. Negative values indicate a position

below the baseline. Corresponds to the post table entry

underlinePosition. Default is −100.

underlineThickness integer Underline thickness value. Corresponds

to the post table entry underlineThickness. Default is 50. ‘In

general, the underline thickness should match the thickness of

the underscore character (U+005F), and should also match the

strikeout thickness, which is specified in the OS/2 table.’

unicodeRanges list A list of supported Unicode ranges in the font.

Corresponds to the OpenType OS/2 table ulUnicodeRange1,

ulUnicodeRange2, ulUnicodeRange3 and ulUnicodeRange4

fields. The dialog offers a search field, so you can quickly spot the

proper ranges for your fonts. E.g., if you want to cover all Latin

ranges, simply search for ‘latin’ and all corresponding ranges in

the list will be displayed.

‘If a bit is set, then the Unicode ranges assigned to that bit are

considered functional. If the bit is clear, then the range is not

considered functional. Each of the bits is treated as an

independent flag and the bits can be set in any combination. The

determination of “functional” is left up to the font designer,

although character set selection should attempt to be functional

by ranges if at all possible.’

uniqueID string Unique font identifier. Corresponds to the OpenType

name table ID 3

unitsPerEm integer Units per em. Default is 1000 for

PostScript-flavored OpenType fonts and a power of two between

16 and 16,384 (usually 2048) for TrueType-flavored OpenType

fonts. The value specified is the amount of units that will be used

for the font size. A smaller value will cause the font to appear

larger on screen, and vice versa. This parameter will only set the

UPM value, and not scale node coordinates and other

measurements. If you do want to scale, see Scale to UPM.

Update Features boolean Forces an update of all automatic feature

code. This is especially useful in a phase of font production

where the glyph set changes a lot, or, if explicitly turned off, for

suppressing the automatic feature code generation.

Appendix Glyphs 3 Handbook, October 2021 276

Use Extension Kerning boolean If checked, additional kern lookups

will be created with a GPOS Extension lookup type (a.k.a. lookup

type 9), allowing the font to store more kerning values. Use this

when the attempt to export your font results in an offset overflow

error in the GPOS table, and you cannot or do not want to delete

kern pairs, especially exceptions.

‘This lookup provides a mechanism whereby any other lookup

type’s subtables are stored at a 32-bit offset location in the GPOS

table. This is needed if the total size of the subtables exceeds the

16-bit limits of the various other offsets in the GPOS table. In this

specification, the subtable stored at the 32-bit offset location is

termed the “extension” subtable.’

Use Line Breaks boolean If checked, line breaks inside OpenType

features will not be escaped (i.e., not replaced with) when

stored in a .glyphs file. If unchecked, can facilitate version control,

and thus makes sense, e.g., in a git-based workflow.

Use Typo Metrics boolean If checked, applications that respect this

setting (in particular, versions of Microsoft Office since 2006) will

prefer typoAscender, typoDescender, and typoLineGap over

winAscent and winDescent for determining the vertical

positioning. Default is off. Corresponds to bit 7 (‘don’t use Win

line metrics’) in the OS/2 table fsSelection field. According to

Adobe’s MakeOTF User Guide, this bit was introduced ‘so that

reflow of documents will happen less often than if Microsoft just

changed the behavior for all fonts.’

Microsoft: ‘If set, it is strongly recommended that applications

use typoAscender − typoDescender + typoLineGap as the default

line spacing for this font.’

‘In variable fonts, default line metrics should always be set using

the typoAscender, typoDescender and typoLineGap values, and

the Use Typo Metrics flag should be set. The ascender, descender

and lineGap fields in the hhea table should be set to the same

values as typoAscender, typoDescender and typoLineGap. The

winAscent and winDescent fields should be used to specify a

recommended clipping rectangle.’

Variable Font Family Name string Family name for the variable font

export. It makes sense to have a different family name for the

likely use case that both static and variable fonts are in use at the

same time.

Variable Font File Name string File name for the variable font export.

Appendix Glyphs 3 Handbook, October 2021 277

Overrides the default ‘VF.ttf’ ending that Glyphs employs.

Variable Font Optimize Deltas boolean Will drop OpenType Variation

deltas from a contour if none of its nodes moves more than half a

unit. Default is on. Set this parameter to off in order to also keep

low-significant deltas.

Variable Font Origin string Master to be used for the set of outlines

that will be stored in the variable font file. All other masters and

instances will be reached by adding point deltas to these

default outlines.

Variable Font Style Name string Family name for the variable font

export. It makes sense to have a different family name for the

likely use case that both static and variable fonts are in use at the

same time.

variableStyleName string Family name for the variable font export. It

makes sense to have a different family name for the likely use case

that both static and variable fonts are in use at the same time.

Variation Font Origin string Master to be used for the set of outlines

that will be stored in the variable font file. All other masters and

instances will be reached by adding point deltas to these

default outlines.

variationsPostScriptNamePrefix string PostScript Name Prefix for

Variable Fonts. Corresponds to name ID 25 in the OpenType name

table. For processing of a variable font instance, e.g., in a PDF, a

specific PostScript name is calculated automatically, based on the

PostScript Font Name, axis tags, and axis positions (design space

coordinates). This constructed PostScript name cannot be longer

than 127 characters. If no prefix is provided, the US English string

for typographic (‘preferred’) family name (name ID 16) will be

used, minus any characters not within ASCII A-Z, a-z and 0-9.

Microsoft: used as ‘family prefix in the PostScript Name

Generation for Variation Fonts algorithm. The character set is

restricted to ASCII-range uppercase Latin letters, lowercase Latin

letters, and digits. All name strings for name ID 25 within a font,

when converted to ASCII, must be identical.’

Adobe: ‘Including a Variations PostScript Name Prefix string

(name ID 25) in a font could be useful in the following cases:

if the US English typographic family name, US English named

instance fvar subfamilyNameID, or the number of axis descriptors

in the font could tip the length of the generated PostScript names

to over 127 characters, or

Appendix Glyphs 3 Handbook, October 2021 278

if the US English typographic family name contains accented or

other characters that when removed by the algorithm ... could

cause confusion or even ambiguity in PostScript names. For

example, both typographic family names “André Sans” and

“Andró Sans” resolve to family prefix “AndrSans”, an ambiguity

that could be avoided by providing Variation PostScript Name

Prefixes “AndreSans” and “AndroSans” in the fonts.’

vendorID string Four-character identifier for the creator of the font,

consisting of printable ASCII characters (U+0020 through

U+007E) only. Corresponds to the achVendID field in the

OpenType OS/2 table. If not set, Glyphs will use ‘UKWN’

(‘unknown’) as Vendor ID. ‘This is not the royalty owner of the

original artwork. This is the company responsible for the

marketing and distribution of the typeface that is being classified.

For example, there may be multiple vendors of ITC Zapf

Dingbats, with some vendors providing differentiating benefits in

their fonts (more kern pairs, unregularized data, hand hinted, etc.).

This identifier will allow for the correct vendor’s type to be used

over another, possibly inferior, font file.

Microsoft maintains a registry of vendor IDs. Registered IDs must

be unique to a single vendor. Non-registered IDs can also be

used, but are discouraged: vendors are strongly encouraged to

register an ID to ensure that there are no conflicts between

different vendors in use of a given ID, and that customers are able

to find vendor contact information for a given font. This field can

also be left blank (set to null, or a tag comprised of four space

characters).’

versionString string Version string. Should begin with the syntax

“Version .” (with a space between “Version” and the number). A

placeholder string into which the version number will be inserted

automatically, e.g., Version \%d.\%03d, where %d stands for an

integer, and %03d for integer represented with three digits, e.g.,

008. The string must contain a version number of the following

form: one or more digits (0-9) of value less than 65,535, followed

by a period, followed by one or more digits of value less than

65,535. Any character other than a digit will terminate the minor

number. A character such as “;” is helpful to separate different

pieces of version information. The first such match in the string

can be used by installation software to compare font versions.

Note that some installers may require the string to start with

“Version ”, followed by a version number as above.’

Appendix Glyphs 3 Handbook, October 2021 279

vheaVertAscender integer Ascender value for vertical typesetting.

Corresponds to the vertTypoAscender field in the OpenType

vhea table.

‘The vertical typographic ascender for this font. It is the distance

in units from the ideographic em-box center baseline for the

vertical axis to the right edge of the ideographic em-box. It is

usually set to UPM ÷ 2. For example, a font with an em of 1000

units will set this field to 500.’

vheaVertDescender integer Descender value for vertical typesetting,

typically a negative number. Corresponds to the

vertTypoDescender field in the OpenType vhea table.

‘The vertical typographic descender for this font. It is the distance

in units from the ideographic em-box center baseline for the

vertical axis to the left edge of the ideographic em-box. It is

usually set to −UPM ÷ 2. For example, a font with an em of 1000

units will set this field to −500.’

vheaVertLineGap integer Line gap value for vertical typesetting.

Corresponds to the vertTypoLineGap field in the OpenType

vhea table.

‘The vertical typographic gap for this font. An application can

determine the recommended line spacing for single spaced

vertical text for an OpenType font by the following expression:

ideographic embox width + vertTypoLineGap.’

Virtual Master Defines a font master for a variable font, thereby

extending its design space accordingly. Rather than a ‘real’ master,

which is defined in File > Font Info > Masters, a virtual master

can only be drawn in the form of a Brace layer, i.e., a glyph layer

with a name consisting of or ending in the comma-separated

design space coordinates between curly braces, e.g., ‘{100, 300}’.

A virtual master makes most sense for design axes that only apply

to a limited number of glyphs, e.g., an axis that controls the

middle crossbar heights of letters like A, E, F and H. The main

advantages are that only affected glyphs need to be managed,

and kerning does not need to be redone for an extra ‘real’ master.

Webfont Formats list For the instance in which this parameter is

specified, the listed webfont formats will be exported, regardless

of the settings in the Export dialog. Possible values: TTF, EOT,

WOFF or WOFF2.

Webfont Only boolean If activated, it removes some of the

information stored in the font file necessary for desktop use. This

Appendix Glyphs 3 Handbook, October 2021 280

makes it harder to convert the webfont into a different format or

to install it locally in an operating system like Windows or macOS.

Careful: Technically, this option produces a damaged font, which,

however, still works as webfont in browsers.

winAscent integer A positive integer describing the top extremum of

the font rendering box for Windows, beyond which glyph

renderings may be clipped. Thus, winAscent should be high

enough to include all parts of all important glyphs. Corresponds

to the usWinAscent field in the OpenType OS/2 table.

‘The “Windows ascender” metric. This should be used to specify

the height above the baseline for a clipping region. This is similar

to the typoAscender field, and also to the hheaAscender field.

There are important differences between these, however. In the

Windows GDI implementation, the winAscent and winDescent

values have been used to determine the size of the bitmap

surface in the TrueType rasterizer. Windows GDI will clip any

portion of a TrueType glyph outline that appears above the

winAscent value. If any clipping is unacceptable, then the value

should be set greater than or equal to yMax. Note: This pertains

to the default position of glyphs, not their final position in layout

after data from the GPOS or kern table has been applied. Some

legacy applications use the winAscent and winDescent values to

determine default line spacing. This is strongly discouraged. The

typoAscender, typoDescender and typoLineGap fields should

be used for this purpose. Note that some applications use either

the winAscent /winDescent values or the

typoAscender/typoDescender/typoLineGap values to

determine default line spacing, depending on whether the Use

Typo Metrics flag is set. This may be useful to provide

compatibility with legacy documents using older fonts, while also

providing better and more-portable layout using newer fonts.

Applications that use the

typoAscender/typoDescender/typoLineGap fields for default

line spacing can use the winAscent/winDescent values to

determine the size of a clipping region. Some applications use a

clipping region for editing scenarios to determine what portion

of the display surface to re-draw when text is edited, or how large

a selection rectangle to draw when text is selected. Early versions

of this specification suggested that the winAscent value be

computed as the yMax for all characters in the Windows ANSI

character set. For new fonts, the value should be determined

Appendix Glyphs 3 Handbook, October 2021 281

based on the primary languages the font is designed to support,

and should take into consideration additional height that may be

required to accommodate tall glyphs or mark positioning.’

For a detailed discussion of vertical metrics, see the Vertical

Metrics tutorial.

winDescent integer A positive integer describing the bottom

extremum of the font rendering box for Windows. Thus,

winDescent should be large enough to encompass the

descenders of lowercase letters like g, p, q, and y. Corresponds to

the usWinDescent field of the OpenType OS/2 table.

‘Early versions of this specification suggested that the

winDescent value be computed as -yMin for all characters in the

Windows ANSI character set. For new fonts, the value should be

determined based on the primary languages the font is designed

to support, and should take into consideration additional vertical

extent that may be required to accommodate glyphs with low

descenders or mark positioning.’

Write DisplayStrings boolean If disabled, prevents the DisplayStrings

from being written into the .glyphs file. DisplayStrings store the

text content of Edit tabs. This can facilitate version control.

Default is enabled.

Write lastChange boolean If disabled, prevents the Last Changed

Date from being written into the .glyphs file. This can facilitate

version control. Default is enabled.

WWSFamilyName string WWS family name. WWS stands for ‘Weight

Width Slope’. Corresponds to the OpenType name table ID 21.

‘Used to provide a WWS-conformant family name in case the

entries for IDs 16 (preferredFamilyName) and 17

(preferredSubfamilyName) do not conform to the WWS model.

(That is, in case the entry for ID 17 includes qualifiers for some

attribute other than weight, width or slope.)’ Frequent use cases

are family names that indicate optical sizes: ‘Examples of name

ID 21: “Minion Pro Caption” and “Minion Pro Display”. (Name ID

16 would be “Minion Pro” for these examples.)’

WWSSubfamilyName string WWS Subfamily name. Corresponds to

the OpenType name table ID 22.

‘Used in conjunction with ID 21, this ID provides a

WWS-conformant subfamily name (reflecting only weight, width

and slope attributes) in case the entries for IDs 16 and 17 do not

conform to the WWS model. […] Examples of name ID 22:

Appendix Glyphs 3 Handbook, October 2021 282

https://glyphsapp.com/tutorials/vertical-metrics
https://glyphsapp.com/tutorials/vertical-metrics

“Semibold Italic”, “Bold Condensed”. (Name ID 17 could be

“Semibold Italic Caption”, or “Bold Condensed Display”, for

example.)’ For name IDs 16 and 17, see the entries for

preferredFamilyName and preferredSubfamilyName,

respectively.

Appendix Glyphs 3 Handbook, October 2021 283

The text face is ABC Arizona, designed by Elias Hanzer for

Dinamo. This is a variable font ranging from thin to bold, sans

serif to serif, and upright to italic.

Computer code is set in Cascadia Code, designed by Aaron Bell

for Microsoft. The version used in this handbook has been

slightly adjusted to accompany the text face.

The illustrations placed throughout the pages use glyphs of the

following typefaces: ABC Arizona; Alegreya, Alegreya Sans, &

Piazzolla by Juan Pablo del Peral/Huerta Tipográfica;

Apple Color Emoji by Apple; Cerne by Peter S. Baker, Cormorant

by Christian Thalmann/Catharsis Fonts; Graublau Sans &

Graublau Slab by Georg Seifert; Hola Pixel by

Rainer Erich Scheichelbauer/Schriftlabor; Lapture by Tim Ahrens/

Just Another Foundry; Liebe Heide by Ulrike Rausch/LiebeFonts;

Literata by Veronika Burian & José Scaglione/TypeTogether;

Lyon Arabic by Khajag Apelian, Wael Morcos, & Kai Bernau/

Commercial Type; Mada by Khaled Hosny/Alif Type;

Proxima Vara by Mark Simonson; Rasa by Anna Giedrys &

David Brezina/Rosetta Type; and Work Sans by Wei Huang.

	Glyphs
	Glyphs Mini
	Community
	Issues

	Create
	Preferences
	Updates
	Appearance
	User Settings
	Sample Strings
	Sharing
	Addons
	Python version
	Console Output
	Alternate Plugin Repositories

	Shortcuts

	Edit View
	Drawing Paths
	Draw Tool
	Pencil Tool
	Primitives

	Editing Paths
	Selecting Nodes and Paths
	Freeform Selections
	Moving Selected Nodes and Paths
	Converting Nodes and Segments
	Nodes in Alignment Zones
	Scaling & Rotating
	Aligning
	Duplicating Paths
	Deleting Nodes
	Opening and Closing Paths
	Cutting Paths
	Resegmenting Outlines
	Controlling Path Direction
	Extremes & Inflections
	Duplicate Nodes
	Focusing & Locking

	Graphic Attributes
	Creating Strokes
	Masking

	Anchors
	Adding, Editing, and Removing Anchors
	Mark to Base Positioning
	Mark to Mark Positioning
	Cursive Attachment
	Ligature Carets
	Contextual Mark Attachment

	Guides
	Magnetic Guides
	Local & Global Guides
	Glyph-Specific Undo History

	Glyph Info
	Horizontal Layout
	Vertical Layout

	Glyph Display
	Zooming
	Panning
	View Options
	Glyph & Layer Colors

	Background
	Entering Text
	Text Preview
	Sample Strings
	Text Tool
	Writing Direction

	Measuring
	Info box
	Measurement Tool
	Measurement Guides
	Measurement Line

	Annotating
	Annotation Cursor
	Annotation Text
	Annotation Arrow
	Annotation Circle
	Plus & Minus Annotations

	Images
	Adding Images
	Manipulating Images

	Previewing & Testing
	Previewing Kerning
	Previewing Masters
	Previewing OpenType Features
	Previewing Interpolated Instances
	Previewing in macOS
	Previewing in Adobe Applications
	Previewing in Web Browsers

	Palette
	Dimensions
	Fit Curve
	Layers
	Master Layers
	Backup Layers
	Special Layers

	Transformations
	Transformation Origin
	Mirroring
	Scaling
	Rotating and Slanting
	Aligning
	Boolean Operations

	Filters
	Applying Filters
	Filter Menu
	Filters as Custom Parameters

	Built-In Filters
	Shape Order
	Extrude
	Hatch Outline
	Offset Curve
	Roughen
	Round Corners
	Rounded Font
	Transformations
	Add Extremes
	Remove Overlap
	Third-Party Filters

	Font View
	Viewing Glyphs
	Grid View
	List View

	Managing the Glyph Set
	Adding New Glyphs
	Copying Glyphs Between Files
	Removing Glyphs

	Glyph Properties
	Glyph Name
	Metrics
	Kerning Groups
	Exports
	Color Label
	Tags
	Unicode
	Production Name
	Script
	Category & Subcategory
	Case
	Writing Direction
	Sort Name
	ID
	Char
	Note
	Components
	Last Changed

	Batch-Processing
	Selecting Glyphs
	Batch Commands
	Batch-Renaming Glyphs
	Filters
	Palette
	Plug-ins & Scripts

	Filtering & Sorting
	Search Field
	Categories
	Languages
	Smart Filters
	List Filters
	Manage Filters
	Custom Categories & Languages
	Glyphs Order

	Names and Unicode
	Glyph Info Database
	Naming Glyphs
	Glyph Naming Rules
	Copy Glyph Names
	Renaming Glyphs
	CID Mapping

	Images

	Font Info
	Font
	Family Name
	Units per Em
	Version
	Date
	Designer & Designer URL
	Manufacturer & Manufacturer URL
	Copyright
	License & License URL
	Trademark
	Description
	Sample Texts
	Axes
	Custom Parameters

	Masters
	Managing Masters
	General
	Axes Coordinates
	Metrics & Alignment Zones
	Stems
	Custom Parameters
	Number Values

	Exports
	Active
	Style Name
	Weight & Width
	Axes Coordinates
	Style Linking
	Custom Parameters

	Features
	OpenType Feature Code
	Automatic Feature Code
	Manual Feature Code
	Tokens
	Conditional Feature Code
	Naming Stylistic Sets
	Implicit Features
	Export-Specific Features

	Other Settings
	Grid Spacing & Subdivision
	Keyboard Increments
	Use Custom Naming
	Disable Automatic Alignment
	Keep Alternates Next to Base Glyph
	File Format Version

	Notes

	Reusing Shapes
	Components
	Building Composites
	Turning Paths into Components
	Recipes
	Editing Components
	Moving between Base Glyphs and Composites
	Component Placeholders
	Anchors
	Automatic Alignment
	Locking Components
	Decomposing
	Combining Paths and Components
	Nesting Components
	Preferred Marks for Glyph Composition
	Underscore Components

	Smart Components
	Setting up Smart Glyphs
	Using Smart Components
	Width & Height Properties
	Smart Handles

	Corner Components
	Creating Corner Glyphs
	Using Corner Components
	Extra Nodes

	Cap Components
	Creating Cap Glyphs
	Using Cap Components

	Segment Components
	Creating Segment Glyphs
	Using Segment Components

	Brushes
	Creating Brush Glyphs
	Using Brushes

	Pixel Tool
	Setup
	Drawing Pixels
	Pixel Shape

	Spacing & Kerning
	Spacing
	Info box
	Spacing Shortcuts
	Metrics Keys
	Metrics Keys and Automatic Alignment

	Kerning
	Kerning Modes
	Info box
	Kerning Shortcuts
	Kerning Groups
	Kerning Group Exceptions
	Kerning Window
	Manual Kerning Code

	PostScript Hinting
	Font-Wide Hints
	Standard Stems
	Alignment Zones
	Custom Parameters

	Autohinting
	Flex Hints

	Manual hinting
	Stem Hints
	Ghost Hints
	Hinting Multiple Masters

	TrueType Hinting
	Autohinting
	Font-level Hints
	TrueType Zones
	TrueType Stems
	TrueType BlueFuzz

	Glyph-level Hints
	Hinting Outlines
	Pixel Size
	Hint Direction
	Hint Order
	Show Point Indexes
	Hinting Preview
	Web Preview

	Instructions
	Snap (A)
	Stem (S)
	Shift (F)
	Interpolate (G)
	Delta (E)
	Points in Overlapping Intersections

	Advanced TrueType Hinting

	Interpolation
	Interpolation Applications
	Setting up Axes
	Setting up Masters
	Axes Coordinates
	Minimal Multiple Masters Setup
	Elaborate Multiple Masters Setups

	Setting up Instances
	Static Instances
	Variable Font Settings

	Outline Compatibility
	Identifying Incompatible Outlines
	Correcting Path Direction
	Reordering Shapes
	Master Compatibility

	Intermediate Layers
	Intermediate Layer Setup
	Virtual Masters

	Switching Shapes
	Alternate Layers
	Replacing Glyphs at Export
	Conditional Glyph Substitutions

	Editing Multiple Masters
	Select All Layers Tool
	Show All Masters
	Keep Layer Selection in Sync

	Working with Multiple Fonts
	Grouping Fonts into Families
	Glyphs Files, Masters, & Instances
	Compare Fonts

	Variable Font Options
	Variable Font Origin
	Axis Location
	Axis Mappings
	Style Attributes Table

	Color Fonts
	Working with Color Fonts
	Keeping the Metrics in Sync
	Previewing Color Fonts
	Exporting Color Fonts

	Layered Color Fonts
	Initial Setup
	Editing Color Layers
	Exporting

	CPAL/COLR Fonts
	Defining the Color Palette
	Master Layer as Fallback
	Color Palette Layers
	Exporting

	sbix Fonts
	Standard Bitmap Graphics
	Preparing Images
	Adding Images to Glyphs
	Exporting

	SVG Color Fonts
	Converting to SVG
	Importing Existing SVG Files
	Creating SVG Glyphs

	Import & Export
	Exporting Font Files
	OpenType Export
	Variable Fonts Export
	UFO Export
	Metrics Export

	Source Formats
	Glyphs File
	Glyphs File Package
	Unified Font Object

	Opening Font Files
	Font File Importing Behaviors
	Opening TrueType Font
	Importing Multiple Fonts Files into a Glyphs File
	Importing OpenType Features
	Importing PostScript Hints

	Importing Font Data
	Importing Outlines
	Importing Metrics
	Importing Feature Files

	Vector Drawing Applications
	Adobe Illustrator
	Affinity Designer
	Sketch

	File Format Interoperability
	Projects
	Setting up a Project
	Exporting a Project

	Extensions
	Plugin Manager
	Scripts
	Run Scripts
	The Scripts Folder
	Creating Scripts

	Plug-ins
	Installing Plug-ins
	Creating Plug-ins

	Appendix
	Regular Expressions
	Custom Feature Code Snippets
	Automatic Feature Generation
	Custom Parameters

