
Type 1 Specifications 6/21/90 final front.legal.doc

Adobe Type 1
Font Format
Adobe Systems IncorporatedAdobe Systems Incorporated

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario • Wokingham, England • Amsterdam
Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan

Library of Congress Cataloging-in-Publication Data

Adobe type 1 font format / Adobe Systems Incorporated.
p. cm

Includes index
ISBN 0-201-57044-0
1. PostScript (Computer program language) 2. Adobe

Type 1 font (Computer program) I. Adobe Systems.
QA76.73.P67A36 1990
686.2’2544536—dc20 90-42516

Copyright © 1990 Adobe Systems Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated and Addison-Wesley, Inc.

Printed in the United States of America.
Published simultaneously in Canada.

The information in this book is furnished for informational use only, is subject to
change without notice, and should not be construed as a commitment by Adobe
Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or
liability for any errors or inaccuracies that may appear in this book. The software
described in this book is furnished under license and may only be used or copied
in accordance with the terms of such license.

Please remember that existing font software programs that you may desire to
access as a result of information described in this book may be protected under
copyright law. The unauthorized use or modification of any existing font software
program could be a violation of the rights of the author. Please be sure you obtain
any permission required from such authors.

PostScript, the PostScript logo, Display PostScript, Adobe, and the Adobe logo are
trademarks of Adobe Systems Incorporated registered in the U.S. Adobe Type
Manager is a trademark of Adobe Systems Incorporated. IBM is a registered trade-
mark of International Business Machines Corporation. Macintosh and
LaserWriter are registered trademarks of Apple Computer, Inc. Helvetica and
Optima are trademarks of Linotype AG and/or its subsidiaries. ITC Stone is a reg-
istered trademark of International Typeface Corporation. Other brand or product
names are the trademarks or registered trademarks of their respective holders.

3456789-MU-96959493
Third printing, February 1993, Version 1.1

Type 1 Specifications 2/12/90 final contents

i

Chapter 1: Introduction ... 1

1.1 What Is a Type 1 Font Program?.. 2
1.2 What This Document Does.. 3
1.3 Versions and Compatibility ... 4
1.4 Copyrights for Type 1 Font Programs.. 5

Chapter 2: Font Program Organization.. 7

2.1 Building Characters.. 7
2.2 Font Dictionary.. 9
2.3 Explanation of a Typical Font Program....................................... 10
2.4 Inside the Encrypted Portion... 14
2.5 Unique Identification Numbers and Font Names 17

Chapter 3: Character Outline Considerations 21

3.1 Character Geography... 21
3.2 Alignments and Overshoots .. 23
3.3 Character Coordinate Space .. 25
3.4 Character Paths .. 26
3.5 Direction of Paths .. 27
3.6 Overlapping Paths.. 28

Chapter 4: Technical Design Considerations 29

4.1 Points at Extremes.. 29
4.2 Tangent Continuity ... 30
4.3 Conciseness .. 31
4.4 Consistency.. 32

Contents

ii Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final contents

Chapter 5: Private Dictionary ... 35

5.1 Declarative Hints.. 35
5.2 Font Level Hints... 36
5.3 BlueValues .. 36
5.4 OtherBlues.. 38
5.5 FamilyBlues and FamilyOtherBlues ... 38
5.6 BlueScale... 39
5.7 BlueShift ... 40
5.8 BlueFuzz ... 41
5.9 Stem Width Information ... 42
5.10 ForceBold.. 43
5.11 LanguageGroup.. 44
5.12 lenIV... 45
5.13 Compatibility Entries... 45
5.14 ExpansionFactor... 45

Chapter 6: CharStrings Dictionary.. 47

6.1 Charstring Encoding .. 47
6.2 Charstring Number Encoding.. 48
6.3 Charstring Command Encoding.. 48
6.4 Charstring Command List ... 49
6.5 Character Level Hints... 56
6.6 Encoding Example ... 58

Chapter 7: Encryption .. 61

7.1 Encryption Method.. 61
7.2 eexec Encryption.. 63
7.3 Charstring Encryption ... 64

Chapter 8: Using Subroutines ... 67

8.1 Changing Hints Within a Character ... 69
8.2 Dot Sections ... 71
8.3 Flex ... 72
8.4 First Four Subrs Entries... 78

Chapter 9: Special Font Organizations ... 79

9.1 Synthetic Fonts .. 79
9.2 Hybrid Fonts .. 80

Chapter 10: Adobe Type Manager Compatibility 83

10.1 Simple Values ... 84
10.2 Arrays ... 84
10.3 Keywords .. 85

Contents iii

Type 1 Specifications 2/12/90 final contents

Appendix 1: Private Dictionary Entries ... 87

Appendix 2: Charstring Command Values 89

Appendix 3: OtherSubrs Programs ... 91

Appendix 4: Changes ... 97

Index .. 99

iv Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final contents

Type 1 Specifications 2/12/90 final chapter 1

1

CHAPTER 1

This document describes the organization of the Adobe Type 1
font format and how to create a Type 1 font program. A Type 1
font program is actually a special case of a PostScript® language
program. The PostScript interpreter renders the font intelligently,
in a device-independent manner. This allows a font developer to
create one font program that can be rendered on a wide variety
of devices and at many different resolutions.

• A Type 1 font program consists of a clear text (ASCII) portion,
and an encoded and encrypted portion.

• The PostScript language commands used in a Type 1 font pro-
gram must conform to a much stricter syntax than do
“normal” PostScript language programs.

• Type 1 font programs can include special “hints” that make
their representation as exact as possible on a wide variety of
devices and pixel densities.

This document explains the required contents of the clear and
encrypted portions of a Type 1 font program, reveals the font
encryption and decryption algorithms, provides syntax informa-
tion, and explains how to declare hints when creating Type 1
font programs.

• Chapter 1 discusses some background issues about Type 1 font
programs and their differences from Type 3 font programs.

• Chapter 2 explains the different parts of the PostScript lan-
guage program that makes up a font program.

• Chapter 3 describes general terminology and how the different
features that make up the characters in a font program are con-
structed.

Introduction

2 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 1

• Chapter 4 provides several tips on managing the technical part
of design aesthetics.

• Chapter 5 explains the contents of the Private dictionary.

• Chapter 6 explains the contents of the CharStrings dictionary,
explains charstring number and command encoding, and lists
the commands used in Type 1 charstrings and their encodings.

• Chapter 7 discloses the method of encrypting and decrypting
Type 1 font programs.

• Chapter 8 shows how subroutines can be used for font pro-
gram space requirement reduction and hint substitution.

• Chapter 9 describes the special organization of synthetic and
hybrid font programs.

• Chapter 10 provides necessary information to ensure compat-
ibility with Adobe Type Manager™ (ATM™) software.

• The appendices contain lists of dictionary entries, commands,
and PostScript language code that you may wish to include in
your own font programs.

1.1 What Is a Type 1 Font Program?

The PostScript language has changed the way computers display
and print documents. This language unifies text and graphics by
treating letter shapes as general graphic objects. Since letters are
used so frequently in printed images, the PostScript language has
special operators to handle collections of letter shapes conve-
niently. These collections are called fonts; each font usually
consists of letters and symbols whose shapes share certain stylis-
tic properties.

The complete specification for the PostScript language, including
information on how font programs are organized, appears in the
PostScript Language Reference Manual, published by Addison-
Wesley. In addition to the font format that is described in the
PostScript Language Reference Manual (commonly known as “Type
3 font format” or “user-defined font format”), the PostScript
interpreter also accepts a font format, called the Type 1 font
format, that is not part of the PostScript language definition and
is not fully described in the PostScript Language Reference Manual.

Chapter 1: Introduction 3

Type 1 Specifications 2/12/90 final chapter 1

Type 1 font programs have several advantages over Type 3 font
programs.

• Type 1 font programs are more compact.

• The PostScript interpreter uses special rasterization algorithms
for Type 1 font programs that result in better looking output—
especially at small sizes and low resolutions.

• Type 1 font programs contain hints that indicate special fea-
tures of character shapes not directly expressible by the basic
PostScript language operators.

The special rasterization algorithm and the hints for the Type 1
font format that the rasterization algorithm uses are directed at
features common to collections of letter shapes. The special ras-
terization algorithm and the hints aim to preserve baselines,
letter heights, stem weights, and other such features. Thus, the
Type 1 format is excellent for characters intended to be read as
text. Company logotypes and other symbols are candidates for
the Type 1 font format only insofar as they are letter-like. While
a graphic symbol may benefit from being made into a character
in a font, extremely complicated graphic constructions are better
served by the Type 3 font format as described in the PostScript
Language Reference Manual.

1.2 What This Document Does

The Type 1 font format is a subset (and extension) of the Post-
Script language, with its own syntactical rules. This document
explains how to create a Type 1 font program that will run prop-
erly in the PostScript interpreter and with other Type 1 font
rendering software such as Adobe Type Manager. It also gives a
developer the information necessary to decrypt and understand
the organization of existing Type 1 font programs (such as the
font software included in the Adobe® Type Library). This docu-
ment assumes familiarity with the PostScript Language Reference
Manual, especially the information about font programs.

Note Although Type 1 font format elements are fully explained here, this
document does not include any algorithms that achieve the results
specified; for example, it does not include details of the rendering algo-
rithm used by Adobe’s PostScript interpreter.

4 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 1

Some personal computer file systems require special formats for
disk files that differ from the ASCII text format described here.
The Apple Macintosh® and the IBM® PC are two such systems.
This document does not discuss the details of formats used by
such file systems; these formats can be derived from the ASCII
font program information described here. Special file formats for
these and other file systems are discussed in Technical Note
#5040, Supporting Downloadable PostScript Fonts, available from
the Adobe Systems developer support group.

1.3 Versions and Compatibility

The PostScript interpreter has undergone continual enhance-
ment since its debut in late 1984. During this time, Adobe
Systems has changed both the PostScript interpreter implemen-
tation and the features of the Type 1 font format. These changes
are generally compatible with all versions of the PostScript inter-
preter.

There are several notes in this document about how specific font
program features are treated in older versions of the PostScript
interpreter. In some cases, information that was required by older
versions of the PostScript interpreter for optimal rendering is no
longer needed because more sophisticated algorithms are avail-
able in newer versions of the interpreter. In general, the
rendering of typefaces described in the Type 1 font format will
continue to look better with succeeding versions of the PostScript
interpreter (without changing existing Type 1 font software at all)
as Adobe Systems continues improving the PostScript interpreter.

Any future extensions of the Adobe Type 1 font format will be
designed so that they may be ignored by the current generation
of interpreters. These new features will often take the form of new
dictionary entries; other extensions may involve subroutine calls
that can be skipped safely. As long as interpreters for Type 1 font
software are written to ignore such possible future features, these
features will not cause trouble. Future extensions will be thor-
oughly described in revised versions of this document.

Chapter 1: Introduction 5

Type 1 Specifications 2/12/90 final chapter 1

Some Type 1 font rendering software (such as the Adobe Type
Manager product) take advantage of a particular stylized use of
the PostScript language. As a result, a Type 1 font program must
also adhere to these PostScript language usage conventions. The
language resulting from these conventions is considerably more
restricted than the PostScript language; a Type 1 font program
can be read and executed by a PostScript interpreter, but not all
PostScript language usage is acceptable in a Type 1 font program.
These restrictions will be noted wherever necessary in this docu-
ment, particularly in Chapter 10, “Adobe Type Manager
Compatibility.”

1.4 Copyrights for Type 1 Font Programs

Since Type 1 fonts are expressed as computer programs, they are
copyrightable as is any other computer software. For some time,
the copyright status of some types of typeface software was
unclear, since typeface designs are not copyrightable in the
United States. Because Type 1 fonts are computer programs rather
than mere data depicting a typeface, they are clearly copyright-
able.

A copyright on a Type 1 font program confers the same protec-
tion against unauthorized copying that other copyrightable
works, including computer software, enjoy. The ideas expressed
by copyrighted works are not protected; only the particular
expression is. In the case of Type 1 font programs, the typeface
shapes are not protected, but the program text is. A copyright on
a Type 1 font program that generates a particular typeface does
not preclude anyone from independently creating a different
program for that same typeface.

The activity prevented by copyright is copying. Copying includes
obvious acts such as verbatim copying and distribution. It also
covers less obvious activities such as modification and translation
into different forms. If the copyrighted work, in this case a Type
1 font program, is the source of these activities, then the activities
are illegal if not authorized by the copyright holder.

6 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 1

Adobe Systems’ Type 1 font programs are licensed for use on one
or more devices (depending on the terms of particular licenses).
These licenses would permit the use of a licensed program in a
system that translates a Type 1 font program to some other
format in the process of rendering, as long as a copy of the pro-
gram (even in translated form) is not produced.

The personal computer software industry has benefitted greatly
from copyright protection. Competition is keen, and users bene-
fit from the efforts software developers have found to be
worthwhile. Copyright protection gives the developer of a Type
1 font program the incentive to create excellent typeface pro-
grams. In turn, the user of Type 1 font programs can expect to
have available the finest typeface software to choose from.

Type 1 Specifications 2/12/90 final chapter 2

7

CHAPTER 2

A font program written in the PostScript language is a program
that is an organized collection of procedures describing character
shapes. Elements of this collection are accessed by character code
with the show operator, as described in the PostScript Language
Reference Manual. Different font programs contain different
amounts of diverse information, this information is collected
into a dictionary. The dictionary contains required and optional
entries, and is the data object that the PostScript interpreter ref-
erences for all font operations.

2.1 Building Characters

Every Type 3 (user-defined) font program requires a font dictio-
nary entry named BuildChar, as described in the PostScript
Language Reference Manual. The value associated with this name is
a procedure that the PostScript interpreter calls whenever it needs
to have a character built. The Type 3 BuildChar procedure is free
to use whatever method it chooses to supply the PostScript inter-
preter with graphics commands to paint the character associated
with a character code. Generally, BuildChar procedures operate
by selecting a particular procedure for building a character from
an array or from a dictionary of such procedures stored in the
font dictionary.

In contrast, Type 1 font programs implicitly reference a special
BuildChar procedure called Type 1 BuildChar that is internal to the
PostScript interpreter. Consequently, there is no explicit entry
named BuildChar in a Type 1 font dictionary; the fact that it is a
Type 1 font program implies that it uses Type 1 BuildChar. In
essence, the description of the Type 1 font format is the explana-
tion of the functions of Type 1 BuildChar.

Font Program
Organization

8 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 2

Type 1 BuildChar begins by using the character code as an index
into the Encoding array in the font dictionary to obtain the name
of the character to be built. This step is explained in the PostScript
Language Reference Manual; among other advantages, it enables a
user to re-encode a Type 1 font program by changing the
Encoding array without changing anything else. Type 1 Build-
Char then uses the name of the character to be built as a key in
the CharStrings dictionary (contained in the font dictionary) to
obtain a binary string. The string is an encoded and encrypted
representation of a PostScript language program for that charac-
ter’s outline. Finally, Type 1 BuildChar calls a special version of
stroke or fill, depending on the value of PaintType in the font dic-
tionary, to create the character.

Note Because Type 1 font programs were originally produced and were care-
fully checked only within Adobe Systems, Type 1 BuildChar was
designed with the expectation that only error-free Type 1 font programs
would be presented to it. Consequently, Type 1 BuildChar does not pro-
tect itself against data inconsistencies and other problems. For
example, Type 1 BuildChar does not issue error messages. As long as
you follow the rules and suggestions given in this manual, your font
programs will work. Deviations from the suggestions in this document
are somewhat risky. Many problems are likely to be caught with an
invalidfont error; more subtle problems may result in incorrect behavior
by Type 1 BuildChar. Of course, any Type 1 font program produced
should be thoroughly tested at many sizes and rotations, on several
devices, and with Adobe Type Manager software before release.

Chapter 2: Font Program Organization 9

Type 1 Specifications 2/12/90 final chapter 2

2.2 Font Dictionary

Constructing a Type 1 font program means constructing a special
type of font dictionary. As with any PostScript language data
object, a PostScript language program constructs this dictionary.
A list of the required entries in a Type 1 font program is given in
the PostScript Language Reference Manual, and includes the
CharStrings and Private dictionaries, which are required in every
Type 1 font program.

Figure 2a is a conceptual overview of a Type 1 font program;
figure 2b shows the dictionary structure that the font program
creates when it executes. The items contained in the figures are
explained in this document.

Figure 2a. Organization of a Type 1 font program

%!FontType1-1.0

eexec
/Private dictionary

/OtherSubrs
/Subrs 43 array
dup 0 15 RD ~15~binary~bytes~ ND

Type 1 Font Program

/CharStrings 190 dict dup begin
/.notdef 9 RD ~9~binary~bytes~ ND
/A 186 RD ~186~binary~bytes~ ND

end end readonly put noaccess put
dup /FontName get exch definefont pop
mark currentfile closefile
00000000000000000

00000000000000000
cleartomark

ASCII

Binary only
charstring
encryption

ASCII

eexec
encryption

...
...

...
...

...

Binary only
charstring
encryption

10 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 2

Figure 2b. Typical dictionary structure of a Type 1 font program

2.3 Explanation of a Typical Font Program

The program code that follows is a generalized example for a typ-
ical Adobe Type 1 font program. It is derived from the Symbol
font program. Because many parts of a font definition are repeti-
tive, much of the repetition in the following example has been
omitted. The omitted portions are documented with comments.
Items not explicitly discussed here are covered in the PostScript
Language Reference Manual.

/FontInfo
/FontName
/Encoding
/PaintType
/FontType
/FontMatrix
/FontBBox
/UniqueID
/Metrics
/StrokeWidth
/Private
/CharStrings
(/FID)

dictionary
name
array
integer
integer
array
array
integer
dictionary
number
dictionary
dictionary
fontID

/version
/Notice
/FullName
/FamilyName
/Weight
/ItalicAngle
/isFixedPitch
/UnderlinePosition
/UnderlineThickness

string
string
string
string
string
number
boolean
number
number

/RD
/ND
/NP
/Subrs
/OtherSubrs
/UniqueID
/BlueValues
/OtherBlues
/FamilyBlues
/FamilyOtherBlues
/BlueScale
/BlueShift
/BlueFuzz
/StdHW
/StdVW
/StemSnapH
/StemSnapV
/ForceBold
/LanguageGroup
/password
/lenIV
/MinFeature
/RndStemUp

procedure
procedure
procedure
array
array
integer
array
array
array
array
number
integer
integer
array
array
array
array
boolean
integer
integer
integer
array
boolean

/A
/B

/.notdef

charstring
charstring

charstring

... ...

/CharStrings dictionary

/FontInfo dictionary /Private dictionary
font dictionary

Chapter 2: Font Program Organization 11

Type 1 Specifications 2/12/90 final chapter 2

Example 1.

%!FontType1-1.0: Symbol 001.003
%%CreationDate: Thu Apr 16 1987
%%VMusage: 27647 34029
% Copyright (c) 1985, 1987 Adobe Systems
% Incorporated. All rights reserved.
11 dict begin
/FontInfo 8 dict dup begin
/version (001.003) readonly def
/FullName (Symbol) readonly def
/FamilyName (Symbol) readonly def
/Weight (Medium) readonly def
/ItalicAngle 0 def
/isFixedPitch false def
/UnderlinePosition -98 def
/UnderlineThickness 54 def
end readonly def
/FontName /Symbol def
/PaintType 0 def
/FontType 1 def
/FontMatrix [0.001 0 0 0.001 0 0] readonly def
/Encoding 256 array
0 1 255 {1 index exch /.notdef put } for
dup 32 /space put
% . . .
% . . . repetitive assignments to Encoding array omitted
% . . .
dup 254 /bracerightbt put
readonly def
/FontBBox {-180 -293 1090 1010} readonly def
/UniqueID 6859 def
currentdict end
currentfile eexec
05f3acf73b42a65ec11a12df4c6e26
5306f37b5075f007986cdacc4cd13a
49703465ba20c83c12707f179c0586
3d27adc72767ec06a47e733401fa8d
% . . .
% . . . thousands of eexec-encrypted bytes omitted
% . . .
000000000000000000000000000000
000000000000000000000000000000
% . . .
% . . . many zeros omitted
% . . .
000000000000000000000000000000
000000000000000000000000000000
cleartomark

12 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 2

As seen in the preceding example, a Type 1 font program is a pro-
gram written in the PostScript language. It begins with
comments, some of which should be self-explanatory.

All Type 1 fonts must begin with the comment:

%!

This enables a file containing a PostScript program to be easily
identified as such. It is important that every Type 1 font pro-
gram—indeed, every PostScript language program—start with a
“%!” comment; otherwise, it may not be given the appropriate
handling in some operating system environments.

The remainder of the first line (after the “%!”) should identify the
file as a conforming Type 1 font program. A Type 1 font program
conforms to the specified version of the Type 1 font format if the
first line consists of the following characters:

%!FontType1-SpecVersion: FontName FontVersion

where the number SpecVersion is the version of the Adobe Type 1
font format to which the font program conforms (this document
describes Version 1.1 of the Adobe Type 1 Font Format), FontName
is the name of the font understood by the PostScript interpreter,
and FontVersion is the version number of the font program. For
example, the font program shown as an example in this docu-
ment begins with:

%!FontType1-1.0: Symbol 001.003

Note Application programs should also look for the form used by font pro-
grams from Adobe: “%!PS-AdobeFont-1.0: FontName version”.

The comment:

%%VMusage

is useful for application programs, not for the PostScript inter-
preter itself. The application program can use the information
before downloading a font program to decide whether a given
PostScript interpreter has enough VM storage remaining to
accommodate this particular font program. A Type 1 font pro-
gram manufacturer can determine the VM usage values by
issuing a vmstatus command before and after downloading a
font, and then again after downloading the same font a second
time. The difference between the first and second numbers
(before and after the first downloading) yields the second argu-

Chapter 2: Font Program Organization 13

Type 1 Specifications 2/12/90 final chapter 2

ment in the %%VMusage comment; the difference between the
second and third (after the second download) give the first argu-
ment.

The larger number on this line indicates the amount of VM stor-
age this font program will consume if it is the first to be
downloaded; the smaller number indicates the minimum
amount of VM this font program will need. The numbers are not
equal because some items, such as names, can share VM storage
in some versions of the PostScript interpreter. In synthetic fonts,
these numbers can be very different from each other. See section
9.1, “Synthetic Fonts,” for more information.

After the comments, the program allocates a dictionary with a
capacity of 11 elements; this dictionary will become a font dictio-
nary. The program inserts eight items (FontInfo, FontName,
PaintType, FontType, FontMatrix, Encoding, FontBBox, and
UniqueID) into the dictionary. The 1000 to 1 scaling in the Font-
Matrix as shown is typical of a Type 1 font program and is highly
recommended.

Also highly recommended is that the values for the FontBBox be
as accurate as possible. The PostScript interpreter uses this infor-
mation in making decisions about font caching and clipping. The
FontBBox must be accurate (not all zeros) if the font program uses
the seac command for creating accented characters. In this situ-
ation, an accurate FontBBox is critical to forming unclipped
characters. If the font program does not make use of accented
characters defined by the seac command, then FontBBox can
consist of all zeros.

FontType must be set equal to 1 for all Type 1 font programs.

UniqueID is a value important to font identification and in help-
ing the PostScript interpreter properly cache characters between
jobs. UniqueID is discussed later in this chapter.

Next in the example program is the Encoding array. The
Encoding array determines which character codes are associated
with which character names in the font program. This character
encoding can be changed without altering anything else in the
font program.

14 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 2

The clear text portion of the font program is followed by an
eexec-encrypted portion. The clear text portion ends with an
invocation of the eexec operator, after which the font program
contains ASCII hexadecimal encrypted text:

currentfile eexec
05f3acf73b42a65ec11a12df4c6e26
5306f37b5075f007986cdacc4cd13a
. . . thousands of eexec-encrypted bytes left out . . .

When eexec begins operation, it performs a begin operation on
systemdict to ensure that the operators that follow will be taken
from systemdict. When eexec terminates, it automatically per-
forms an end operation to remove the systemdict that it begins
here.

The text encrypted by eexec must be followed by 512 ASCII zeros.
There may be white space characters (blank, tab, carriage return
or line feed) interspersed among these zeros. Some zeros will be
consumed by the eexec command; the remainder will be
encountered by the PostScript interpreter and pushed onto the
operand stack. A mark operator within the encrypted text marks
the operand stack, and the final cleartomark operator cleans the
mark and the extraneous zeros off the operand stack.

2.4 Inside the Encrypted Portion

In the encrypted portion of the font program are the CharStrings
and the Private dictionaries. The CharStrings dictionary contains
the encoded commands that draw the outlines of the characters
included in the font. The Private dictionary contains hints and
subroutines. The hints in the Private dictionary apply to the
entire font. The Private dictionary may also contain various Post-
Script language procedures that can modify the behavior of the
font program in some versions of the PostScript interpreter. See
Chapter 5, “Private Dictionary,” for more information about the
hinting system and Type 1 font format hints.

The character string values in the CharStrings dictionary must be
encoded and encrypted; decrypting and decoding the string is an
intrinsic part of Type 1 BuildChar. These encoded and encrypted
character outline strings are called charstrings. When decoded,
each charstring bears a resemblance to a PostScript language pro-
gram, in that an operand stack and postfix syntax are used.
However, the set of commands included in the charstrings is spe-
cial to Type 1 BuildChar, and their operands are restricted in type

Chapter 2: Font Program Organization 15

Type 1 Specifications 2/12/90 final chapter 2

and range. The operand stack for charstring operation is separate
from the general PostScript language operand stack. Some com-
mands are similar to built-in operators in the PostScript language.
Other commands, such as those that give hints to the character
rendering algorithm, are unique to Type 1 BuildChar’s input
language.

Note The word “encoding” is used to describe two situations in the Type 1
font format. Charstring encoding refers to the particular form of char-
string contents, with commands and operands represented by short
code sequences. Encoding vector refers to an assignment of character
names to character codes for use in character identification to the show
command. The meaning of the word “encoding” used in various places
in this document should be clear from its context.

By decrypting the eexec-encrypted portion of the Symbol font
program, the following simplified code appears. In this code, a
sequence of n binary bytes is indicated by the form
~n~binary~bytes~.

Example 2.

dup /Private 8 dict dup begin
/RD {string currentfile exch readstring pop} executeonly def
/ND {noaccess def} executeonly def
/NP {noaccess put} executeonly def
/BlueValues [-17 0 487 500 673 685] def
/MinFeature {16 16} def
/password 5839 def
/UniqueID 6859 def
/Subrs 43 array
dup 0 15 RD ~15~binary~bytes~ NP
% . . .
% . . . 41 subroutine definitions omitted
% . . .
dup 42 23 RD ~23~binary~bytes~ NP
ND
2 index /CharStrings 190 dict dup begin
/Alpha 186 RD ~186~binary~bytes~ ND
% . . .
% . . . 188 character definitions omitted
% . . .
/.notdef 9 RD ~9~binary~bytes~ ND
end
end
readonly put
noaccess put
dup /FontName get exch definefont pop
mark currentfile closefile

16 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 2

Two additional items (Private and CharStrings) are added to the
font dictionary. In the example font program, Private is associ-
ated with a dictionary of eight items, RD, ND, NP, BlueValues,
MinFeature, password, UniqueID, and Subrs. CharStrings is asso-
ciated with a dictionary of 190 items in the example; each of
these items in turn associates a character name (such as Alpha)
with an encoded and encrypted charstring. Type 1 BuildChar
interprets each charstring when the character is shown for the
first time. The Subrs entry in the Private dictionary contains
charstring portions that can be referenced multiple times by sub-
routine calls from other charstrings.

Charstrings in actual Type 1 font programs use the RD, ND, and
NP PostScript language procedures shown in the preceding exam-
ple to reduce the size of the font program. In some fonts, these
names might be defined in userdict, or they might be named -|,
|-, and | respectively (constructed with hyphen and vertical bar
characters) in the Private dictionary. Note that a character name
in the CharStrings dictionary cannot be either RD or ND or what-
ever names are substituted for these names, because that would
redefine these critical procedures.

While ND and NP are merely abbreviations that save some bytes
of PostScript language code each time they are used, RD is more
complicated. Each use of RD is followed by exactly one blank
character followed by a sequence of binary bytes that are the
charstring contents. This charstring is not given in ASCII hexa-
decimal form—it is binary. RD itself is preceded by an integer that
tells exactly how many binary bytes follow the RD (not including
the single blank that follows the RD).

Note The RD, NP, and ND functions must be implemented by PostScript lan-
guage procedures and must be invoked by a single name as shown in
the program example. These functions may not be implemented by
equivalent in-line code.

Both the Private dictionary and all of the charstrings are given
the noaccess attribute. Thus, a user of the PostScript interpreter
cannot read or write their contents. This is not necessary in a
Type 1 font program; it has been included in this particular exam-
ple only to protect the contents of these items from casual
reading. Note that while a user of the PostScript interpreter
cannot access these items, the PostScript interpreter itself (partic-
ularly, Type 1 BuildChar) can access them.

Chapter 2: Font Program Organization 17

Type 1 Specifications 2/12/90 final chapter 2

Finally, the definefont operator makes the first dictionary into a
font dictionary. It adds one more item, FID, to this font dictio-
nary. The mark is provided so that the cleartomark operator that
follows the 512 zeros can remove extra zeros from the operand
stack.

The final currentfile closefile sequence terminates the operation
of the eexec command. When eexec terminates, it automatically
performs an end operation to remove the systemdict that it
began.

Note The preceding example shows a character named “.notdef” defined in
the CharStrings dictionary. A Type 1 font program must have a
“.notdef” character defined in its CharStrings dictionary, even if it is
not referenced by the encoding vector.

2.5 Unique Identification Numbers and Font Names

The UniqueID is an optional entry that helps identify the font
program to the interpreter. Its primary purpose is uniquely iden-
tifying bitmaps already created and cached from that font
program; having a UniqueID allows the PostScript interpreter to
cache bitmaps across jobs.

The UniqueID is specified with the entry name UniqueID both in
the font dictionary and in the Private dictionary. Type 1 font dic-
tionaries presented to the definefont operator that differ in any
way except in the values of FontName, FontInfo, or Encoding
must have different UniqueID values. If the UniqueID values are
not present in both the font dictionary and Private dictionary, or
if they have different values, then the font program is treated by
the interpreter as if it had no UniqueID at all: caching will then
be efficient for the immediate job, but the interpreter will not
cache bitmaps for that font across jobs.

If the UniqueID value in a font program is not unique, a subse-
quent application referencing a font program with the same
UniqueID can inadvertently obtain bitmaps that were cached by
the previous job. This is a particular problem for service bureaus
where the cached characters might be written to disk and remain
there during subsequent jobs.

Adobe Systems maintains a registry of UniqueID numbers and
font names for font programs created in the Type 1 format. The
UniqueID number is an integer in the range from 0 to 16,777,215

18 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 2

(224-1). Each FontType has its own independent space of
UniqueID values. Therefore, a Type 1 and a Type 3 font program
could have the same UniqueID number and be safely used
together without causing caching conflicts.

The numbers from 4,000,000 to 4,999,999 form an “open” range
for Type 1 font programs used in a “controlled environment.” An
individual, company, or service bureau can create its own font
programs—such as font programs with extra characters, with
logos, or with transformations—and assign numbers from the
open range. ID conflicts should not occur if all other font pro-
grams in use are from vendors whose UniqueID numbers have
been allocated by Adobe Systems.

Font vendors who plan to widely distribute Type 1 font programs
should obtain a UniqueID number for each font program. In
return for receiving UniqueID numbers, the vendor must agree to
provide Adobe Systems with AFM (Adobe Font Metric) files for all
font programs released. This is necessary to register the font
name and to keep the database of font names and UniqueID
numbers accurate and up-to-date. If you wish to obtain more
information or to request UniqueID numbers for Type 1 font pro-
grams, please write to:

UniqueID Coordinator
Adobe Systems Incorporated
P.O. Box 7900
Mountain View, CA 94039-7900

Not all Type 1 font programs require a UniqueID. To determine
whether a font program needs one, consider the following
options:

• Published or widely-distributed font programs:
A vendor with a Type 1 font program that will be published or
distributed should obtain a UniqueID number assignment
from Adobe Systems and register the font program’s name.

• Limited-distribution or private-use font programs:
Whether a UniqueID is required depends on one of two possi-
bilities:

1. Controlled environment: If the font program is going to be
used only within a single department or company and the
user would like bitmaps created by the font program to
remain cached across subsequent jobs, insert a randomly-
selected number from the “open” range in both of the
dictionaries.

Chapter 2: Font Program Organization 19

Type 1 Specifications 2/12/90 final chapter 2

2. Uncertain distribution: If the font program is to be sent to a
service bureau or if the distribution and printing environ-
ment is uncertain, Adobe encourages you not to use any
UniqueID number. Within a given job, caching still per-
forms well, but the chance of UniqueID conflict with other
jobs is eliminated.

Type 1 font programs should also have unique names. To name a
font program, use the definefont operator. In the example above,
the value associated with FontName is the argument for the
definefont operator. definefont takes the name and a dictionary,
checks that the dictionary is a well-formed font dictionary, makes
the dictionary’s access read-only, and associates the font program
name with the dictionary in the global dictionary FontDirectory.
(It also inserts an additional entry whose name is FID and whose
value is an object of type fontID; this entry serves internal pur-
poses in the font machinery. For this reason, a font dictionary
presented to definefont must have room for at least one addi-
tional key-value pair.)

However, while the FontName key in the font dictionary should
be the name of the font program, it is not necessarily the name
that identifies the font program to the findfont operator. The
name supplied to the definefont operator is the name understood
by the findfont operator. For this reason, Adobe Systems will also
register font program names as part of the UniqueID number and
font name data base.

20 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 2

Type 1 Specifications 2/12/90 final chapter 3

21

CHAPTER 3

Character description is the heart of any Type 1 font program.
Each character shape comprises a path drawn by a series of Post-
Script language programming statements. Each character in a
Type 1 font can consist of no more than one such path. Of course,
this one path may contain several subpaths.

3.1 Character Geography

Although there are typographic terms for a wide variety of char-
acter features, discussion here will be limited to those features
relevant to Type 1 font characters and the Type 1 hinting mech-
anism.

The main vertical strokes of a character are generally known as
vertical stems, and the horizontal strokes are known as horizon-
tal stems. Stems can be straight or curved; see Figure 3a that
follows. For example, in a Type 1 font character, the top and
bottom curved strokes of an “O” can be considered horizontal
stems, and the left and right sides can be considered vertical
stems.

In addition to obvious stem-like features of a character, it is also
important to identify serif shapes. For Type 1 hinting purposes,
the serifs on an “I” are considered horizontal stems. Similarly, the
vertical serifs on the cross stroke of a “T” are considered vertical
stems.

Character Outline
Considerations

22 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 3

Figure 3a. Horizontal stems, vertical stems, and serifs

The rest of this discussion of character geography applies mainly
to roman alphabet typefaces. While other alphabets (symbol sets
and non-roman alphabets, such as Chinese and Arabic) share
many of these features, a detailed discussion of their differences
is beyond the scope of this document.

Several horizontal measurements help to define a character in the
PostScript language.

• A character’s origin is its initial reference point. The origin is
made to coincide with the current point when the character is
shown.

• A character’s width is a vector, generally horizontal to the right,
from the origin to the coordinate at which the current point
will be set after showing this character.

• The left sidebearing is a vector, generally horizontal to the right,
from the origin to a point whose x coordinate coincides with
the x coordinate of the leftmost filled part of the character.

• The left sidebearing point is the coordinate at which the left side-
bearing vector terminates. The y coordinate of the left
sidebearing point is almost always 0. (There are always excep-
tions in font program design, and there can be conditions
where the y coordinate of the left sidebearing point is not 0—
but very few.) The first point in the defining path is measured
relative to the left sidebearing point; subsequent path coordi-
nates are measured relative to the preceding path coordinate.

vertical stemvertical stem

horizontal stem

horizontal stemserif

serif

Chapter 3: Character Outline Considerations 23

Type 1 Specifications 2/12/90 final chapter 3

Figure 3b. Origin, width, left sidebearing and left sidebearing point

3.2 Alignments and Overshoots

Type 1 font hints include many vertical measurements that apply
to an entire typeface. (Chapter 5, “Private Dictionary,” describes
Type 1 font hints in greater detail.) Some of these measurements
help to accurately represent the slight differences in alignment
between flat characters and round characters. In Type 1 font ter-
minology, the round characters are said to overshoot the flat
characters (at both top and bottom).

Type 1 BuildChar accepts alignment and overshoot information
in pairs of numbers. One number indicates the flat position, or the
y coordinate that flat characters reach; the other number is the
overshoot position, or the y coordinate that curved characters
reach. The pair of numbers is called an alignment zone. The differ-
ence between the numbers in an alignment zone is called the
alignment zone height; this height is typically between 10 and 20
units. All coordinates in these descriptions are in character space
units, and assume the 1000 to 1 character space to user space scal-
ing that is typical of the Type 1 font format. There is one
alignment zone of each type applicable across the entire font pro-
gram. Several alignment zones are illustrated in Figure 3c.

• The baseline is the y coordinate of the typographic baseline of
the font (the line on which most flat characters sit). The base-
line is typically zero.

n
left sidebearing

character width

next character
origin

left sidebearing pointorigin

24 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 3

• The baseline overshoot position is the minimum y coordinate
just below the baseline that round parts of characters at the
baseline reach. A value of -15 is typical. Note that curved char-
acters typically extend slightly below the baseline; as a result
this value is typically negative.

• The cap-height is the y coordinate of the top of flat capital let-
ters. A value of 700 is typical.

• The cap-height overshoot position is the maximum y coordinate
just above the cap-height that the round parts of characters
reach. A value 10 to 20 greater than cap-height is typical.

• The x-height is the y coordinate of the top of flat, non-ascend-
ing lower case letters. A value near 450 is typical.

• The x-height overshoot position is the maximum y coordinate
just above the x-height that the round parts of lower case letters
reach. A value 10 to 20 greater than x-height is typical.

Figure 3c. Vertical measurements: baseline and baseline overshoot
position, x-height and x-height overshoot position, cap-height and cap-
height overshoot position

Alignment zones for the tops of character features are called top-
zones, and alignment zones for the bottoms of character features
are called bottom-zones. For example, the cap-height and x-height
zones are top-zones, while the baseline zone is a bottom-zone.
Top-zones and bottom-zones are discussed further in Chapter 5,
“Private Dictionary,” and Chapter 6, “CharStrings Dictionary.”

baseline overshoot position

x-height overshoot position
x-height

cap-height overshoot position
cap-height

baseline

Chapter 3: Character Outline Considerations 25

Type 1 Specifications 2/12/90 final chapter 3

Nearly all roman Type 1 font programs use baseline, cap-height
and x-height alignment zones. Some of these fonts include other
alignment zones as well. These zones may describe figure-height,
ascender-height, descender-depth, superior baseline, ordinal
baseline, and so on. The particular set of zones is chosen
according to the design of the font; there is no requirement that
any particular set of zones be used. For more information, see the
definition of BlueValues in section 5.3, Chapter 5, “Private
Dictionary.”

3.3 Character Coordinate Space

In the PostScript language, characters have their own coordinate
system distinct from the coordinate system used by a specific
device. The coordinate system in which characters are defined is
called character space, the coordinate system used by a device is
called device space, and the coordinate system used in PostScript
language programs for placing objects on a page is called user
space.

Type 1 font programs generally use a 1000 to 1 scaling matrix for
the definition of the relationship of character space units to user
space units. The FontMatrix value in these fonts is typically
[0.001 0 0 0.001 0 0]. Thus, 1000 character space units will scale
down to 1 user space unit (before application of the makefont or
scalefont operators in a PostScript language program). This
allows character space coordinates to be expressed in integer
values without significant loss of precision for most font designs.
If additional precision is necessary, expressions such as 145 10 div
may be used to provide a number (in this case, 14.5) that cannot
be expressed directly in the charstring format.

Figure 3d shows how two characters are situated in the character
space coordinate system. Notice that the value of 1000 is not a
limit of any kind—it simply provides a coordinate system and a
ratio for scaling characters to the one unit master size.

26 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 3

Figure 3d. Character space coordinate system

The only exceptions to the standard 1000 to 1 scaling matrix
involve obliquing, narrowing, and expanding transformations
applied to a font that had been originally defined by a 1000 to 1
scaling matrix. Even in these cases, at least one dimension of the
FontMatrix will be a simple 1000 to 1 scale. Coordinates and
widths should be defined for the normal 1000 to 1 scale. If a dif-
ferent font matrix is applied, for example, to make an oblique
font from a normal font, the new font matrix will transform all
these coordinates and widths together.

Type 1 BuildChar expects that the absolute coordinate values
that define a character outline do not deviate too far outside of
the one user space unit to which the character space coordinates
will be transformed. Absolute coordinate values in both x and y
directions must be between -2000 and +2000. (When coordinate
values are computed using the div command, its operands may be
out of this range; the final result of such a computation however,
must be within this range.)

3.4 Character Paths

A character is made up of PostScript language code that draws the
character in character space. The first step in preparing the con-
tents of a charstring is to develop a PostScript language program
that defines the character outline in character space. An outline
is defined by building a path with the moveto, lineto, curveto,
closepath, rlineto, etc. operators. Only characters defined by out-
lines may be included in Type 1 font programs; for example, the

Å
712

961

y500

-250

Chapter 3: Character Outline Considerations 27

Type 1 Specifications 2/12/90 final chapter 3

image and imagemask operators are not allowed. Once the path
has been expressed using only integer constants (and operations
on them) for coordinates, it is a simple matter to translate from
the pure PostScript language operators to the special set of com-
mands recognized by Type 1 BuildChar. The charstring encoding
allows only integers as numeric constants; however, non-integer
values can be created as a result of arithmetic operations and
passed to the commands. See Chapter 6, “CharStrings Dictio-
nary,” for the complete list of allowable charstring commands.

Many versions of the PostScript interpreter have an internal limit
of 1500 flattened path elements per character; exceeding this
bound results in a limitcheck error. Each character outline in a
given font design must not exceed this limit when rendered.
Each Type 1 font program should be tested sufficiently to verify
that the font program behaves well with respect to this limit. The
upper limit can be checked by testing at least the more compli-
cated characters in a given font (the characters with the greatest
number of path commands) at a reasonably large size, for exam-
ple, 200 points. The characters should be tested on a high-
resolution device set to its highest resolution, where flattening
results in the most segments. The font should, of course, also be
tested with the Adobe Type Manager software product. Kanji font
characters need only be tested on Kanji printers since these print-
ers have significantly increased limits for the number of path
elements allowed.

Should a character result in a limitcheck error, the only choice is
to try to reduce the number of path commands or to convert the
font into the Type 3 font format.

Note A Type 1 font character is filled as one path; complicated characters
can produce a limitcheck error. You must experiment to find the flat-
tened path limit for any particular combination of device and version
of the PostScript interpreter. This is why Adobe Systems encourages
extensive font program testing before release. Generally, your font pro-
gram either will run acceptably or it will generate a limitcheck error.

3.5 Direction of Paths

A subpath that is to be filled must be defined in a counterclock-
wise orientation in character space. A subpath that is to be left
unfilled must be defined in a clockwise orientation. If you imag-
ine walking along a subpath in the direction it is defined, then a
filled area should be on your left. This convention allows Post-

28 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 3

Script language programs to create combinations of paths
involving characters with reliable winding number orientations.
On some implementations of Type 1 BuildChar, this orientation
is expected; some rendering algorithms depend on it.

Figure 3e. Construct subpaths in the correct direction

3.6 Overlapping Paths

A single closed outline should not intersect itself; this can cause
winding number problems. If two filled subpaths in a character
overlap, there may be no problem when the character is filled.
However, a Type 1 font program can also be stroked along its out-
line when the user changes the PaintType entry in the font
dictionary to 2. In this case, overlapping subpaths will be visible
in the output; this yields undesirable visual results in outlined
characters. Always construct the character paths with outlined
output in mind.

Figure 3f. Avoid overlapping subpaths

Filled character Stroked character: incorrect Stroked character: correct

Type 1 Specifications 2/12/90 final chapter 4

29

CHAPTER 4

At first it may seem that character outlines need not differ much
from other graphic outlines. However, the requirements of letter-
forms impose more stringent requirements on a character outline
if it is to look good. Making a PostScript language implementa-
tion of a typeface design involves two essential considerations:

• The character paths must accurately express the true analog
shapes of the original design.

• Certain conventions must be observed to help the interpreter
accurately scale for all sizes.

Failure to observe either of these conventions can result in
uneven stems, unwanted pixels, poor curve shapes, and poor
transitions from straight to curved sections. While there are no
hard and fast rules for font outline design in a Type 1 font pro-
gram, paying attention to the guidelines discussed in this chapter
will help ensure pleasing results.

4.1 Points at Extremes

An endpoint (first or last point of a lineto or curveto) should be
placed at most horizontal or vertical extremes. This implies that
most curves should not include more than 90 degrees of arc. The
placement of extreme points aids the rendering algorithms in
properly reproducing the major features of characters. Of course,
points may be placed anywhere else on the character outline, as
long as the important extremes are defined as well. It is not nec-
essary to place an endpoint at extremes of very small curves such
as the tips of curved serifs.

Technical Design
Considerations

30 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 4

Figure 4a. Place endpoints at most extremes (arrow indicates a possible
exception)

4.2 Tangent Continuity

The smooth, curved path elements that form the lines of a type-
face are particularly hard to represent well when the output
technology is raster-based. Tangent continuity describes the
method that well-designed fonts use to produce outlines with
smooth transitions.

Whenever one path element should make a smooth transition to
the next element (for example, straight line to curve, curve to
straight line, or curve to curve) the endpoint joining the two ele-
ments and the Bézier control points (the off-curve points)
associated with that endpoint (for curves) or the other endpoint
(for lines) should all be collinear. This is especially important at
horizontal and vertical extremes, where slight deviations tend to
be magnified by interaction with the pixel grid.

Chapter 4: Technical Design Considerations 31

Type 1 Specifications 2/12/90 final chapter 4

Figure 4b. Make smooth transitions between path elements

4.3 Conciseness

Character outline definitions should be as concise as possible,
without breaking the other rules. This achieves minimum
memory usage and maximum speed in the rendering system, and
simplifies the task of adding hints.

• Use the fewest Bézier curve segments that accurately represent
a shape.

• Do not use consecutive collinear straight line segments.

• Do not draw straight lines by using collinear curveto defini-
tions (for example, “0 0 moveto 0 10 0 20 0 30 curveto”).

• Whenever possible, use the closepath command to draw one
of the straight line segments, rather than closing a character
with a closepath that results in a zero-length line segment.

• In general, find the smallest sequence of commands that accu-
rately describe the character shape.

Correct

60,100 80,100 100,100

120,0

120,60

120,85
52,75 65,75 78,75

Incorrect

60,102 80,100 100,101

120,0

120,60

121,85

52,74 65,75 78,75

32 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 4

Figure 4c. Paths should be concise

4.4 Consistency

The key to getting the best possible results is consistency. The
original designs of most typefaces include many repeating
weights, alignments, and shapes. Often, however, the process of
creating digital outlines introduces small errors that can obscure
the repeating nature of these features. Seemingly insignificant
differences can become exaggerated on digital devices. Wherever
possible, these errors should be eliminated.

• All stems whose widths are intended to be the same should
have exactly the same width.

• All characters that are intended to align should align at exactly
the same y coordinate.

• All shapes that are intended to be the same should be exactly
the same.

• All spacing characteristics (sidebearings) that are intended to
be the same should be exactly the same.

Correct Incorrect

Chapter 4: Technical Design Considerations 33

Type 1 Specifications 2/12/90 final chapter 4

It is possible to carry consistency too far. It is important to keep
in mind that Type 1 font programs are used to set type at any size
on a wide range of digital devices. Type 1 font programs can be
used on all PostScript language devices. The resolution and mark-
ing characteristics of these devices vary widely. They include
display monitors, laser printers, typesetters, thermal transfer
color printers, film recorders and many others. The resolutions
range from about 75 dpi to 3000 dpi or more.

Consistency should be applied only as long as it accurately
reflects the original design. Some trade-off between the results
obtainable at low and high resolutions is inevitable. It is possible
to achieve high quality on a particular device by adjusting the
outlines to optimize for its resolution and imaging characteris-
tics, for example, for 300-dpi write-black laser printers. However,
such font software may give unsatisfactory results on devices
with very different characteristics and much higher resolution.
There are no requirements in the Type 1 font format that should
cause font design compromises in the interests of consistency.

34 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 4

Type 1 Specifications 2/12/90 final chapter 5

35

CHAPTER 5

The Private dictionary contains hints that apply across all the
characters in the font, subroutines, and several other items such
as a password. Refer to Appendix 1 for a complete listing of the
required and optional entries in the Private dictionary.

The hints used in character outlines help to preserve properties of
shapes when rendered at limited resolutions. When the number
of pixels in a character increases, as with very large characters or
on high-resolution output devices, the hints become less impor-
tant. When a stem is rendered at 100 pixels wide, a 1-pixel
difference matters much less than when the stem is rendered at
only 2 pixels wide. Thus, the implementation of hints mostly
concerns rasterization properties at low resolutions and small
sizes. With the hints in place, Type 1 BuildChar can produce
results that are as close as possible to the original design even
though the shape is reproduced by a relatively small number of
pixels.

5.1 Declarative Hints

As with any software, there are many possible ways to design a
system to compensate for low resolutions and small character
sizes on a raster output device. Some methods are more efficient
than others for modifying character outlines at various sizes and
rotations, for requiring minimal storage, and for allowing inde-
pendence from any given level of rendering technology.

Adobe Systems has created a predominantly declarative hint
system for Type 1 font programs. Declarative hints state con-
straints on the size and positioning of character features, for
example, the width of a stem or the location of an extremity.
These declarative hints are stated in two distinct locations in a
font program. The Private dictionary contains a number of font

Private Dictionary

36 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 5

level hints that apply across all characters represented in the font
program; the individual charstrings in the CharStrings dictionary
contain character level hints that describe important typographic
features about a particular character.

A declarative hint system depends on an intelligent rasterizing
algorithm to render character outlines correctly. Adobe has built
such an algorithm into the PostScript interpreter and its other
rendering software, such as the Adobe Type Manager program.
Consequently, the appearance of font characters created with
declarative hints will continue to improve as hint handling algo-
rithms improve, without modifying the Type 1 font programs.

5.2 Font Level Hints

Hints that apply across an entire font are declared by setting cer-
tain values in the Private dictionary. Many of these hints declare
constraints on the vertical positions of character features across
the entire font. This helps to maintain consistency across the
font, especially when rendered at low resolution. For historical
reasons, these hints are indicated by names that contain the word
“Blue.”

For example, Type 1 BuildChar uses the information in the
BlueValues and OtherBlues arrays to adjust the rendering of char-
acter features that fall within alignment zones. This adjustment
is called alignment control, which at small sizes includes overshoot
suppression. At small sizes, when only a few pixels must represent
a character, a one-pixel overshoot appears too prominent.

5.3 BlueValues

The value associated with BlueValues is an array containing an
even number of integers taken in pairs, and which follow a small
number of rules:

• The first integer in each pair is less than or equal to the second
integer in that pair.

• The first pair is the baseline overshoot position and the base-
line. This is a bottom-zone.

Chapter 5: Private Dictionary 37

Type 1 Specifications 2/12/90 final chapter 5

• All subsequent pairs describe top-zones, that is, alignment
zones for the tops of character features, for example, x-height
and x-height overshoot position, ascender-height and
ascender-height overshoot position, cap-height and cap-
height overshoot position, figure-height and figure-height
overshoot position.

• Up to seven pairs may be given in the BlueValues array; the
first pair must be the baseline pair.

• Different pairs must be at least 3 units apart from each other
and from pairs in OtherBlues, as described in the following
section. (This minimum distance can be modified by the
optional BlueFuzz entry in the Private dictionary; see the def-
inition of BlueFuzz, that follows.)

• The maximum difference between values in one pair is con-
strained as described under the description of BlueScale, that
follows.

For example, an array for the baseline, cap-height and x-height
alignment zones in a typeface might be defined as follows:

/BlueValues [-15 0 700 715 547 559] def

Despite the names given to the various alignment zones
described by the BlueValues, Type 1 BuildChar has no built-in
notions of which parameters apply to which characters. Each
zone helps to control the alignment of any and all characters
with character level hints that fall within the zone.

The BlueValues array is required in the Private dictionary. If no
alignment zones are necessary, use an empty array for the value
of BlueValues:

/BlueValues [] def

38 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 5

5.4 OtherBlues

The optional OtherBlues entry in the Private dictionary is associ-
ated with an array of pairs of integers similar to the BlueValues
array. However, the OtherBlues array describes bottom-zones
only. For example, these may include: descender-depth over-
shoot position and descender-depth, superior baseline overshoot
position and superior baseline, and ordinal baseline overshoot
position and ordinal baseline. Up to five pairs (10 integers) may
be specified in the OtherBlues array. Numbers in a pair must be
in ascending order, with the same restriction on the maximum
difference in a pair. Pairs must be at least 3 units apart from all
other pairs, including those in the BlueValues array. (This mini-
mum distance can be modified by the optional BlueFuzz entry
in the Private dictionary.)

5.5 FamilyBlues and FamilyOtherBlues

When different styles of the same font family are mixed in text,
it is often desirable to coordinate their x-heights, cap-heights,
and other alignments so that they will be the same at small sizes.
For example, at 72 pixels per inch, the x-height of a 10-point
roman face might be 5.4 pixels while the boldface x-height might
be 5.6 pixels. If the roman face is the standard for the family, Type
1 BuildChar in recent versions of the PostScript interpreter can
render both faces with an x-height of 5 pixels instead of letting
the boldface jump to 6 while the roman is still at 5. However, at
100 points, the roman x-height will be 54 pixels and the bold x-
height will be 56.

You can include information about the dominant alignment
zones in a font family so that this consistency can be enforced.
When enabled, if the difference between a font’s alignment and
its family’s standard alignment is less than 1 pixel, then Type 1
BuildChar will use the standard alignment instead of the normal
alignment for that font program. Thus at 10 points in the
previous example, the difference is 5.6 − 5.4 = 0.2 pixels so the
standard is used. At 100 points, the difference is 56 − 54 = 2, so
the specific x-height for the font is used. Family alignment values
are identical to individual font alignment values; i.e., they are
things like x-height, x-height overshoot, etc. The Private
dictionary entries are as follows.

Chapter 5: Private Dictionary 39

Type 1 Specifications 2/12/90 final chapter 5

The value associated with FamilyBlues is an array containing an
even number of integers taken in pairs. The rules governing the
contents of this array are analogous to those of the BlueValues
array.

The value associated with FamilyOtherBlues is an array contain-
ing an even number of integers taken in pairs. The rules
governing the contents of this array are analogous to those of the
OtherBlues array.

Typically, the FamilyBlues and FamilyOtherBlues entries will
simply be copied from the BlueValues and OtherBlues of the stan-
dard face in the family. Each font program in a family (except the
standard face) must have these entries if it is to have family align-
ment properties. Of course, if these entries are not present, then
only a font program’s own alignment hints will be considered.

The FamilyBlues and FamilyOtherBlues entries are relatively new
additions to the Type 1 hinting system. Currently, they are inter-
preted by ATM software version 1.2 (and later). These features
will also be recognized by future versions of the PostScript inter-
preter.

5.6 BlueScale

The optional BlueScale entry in the Private dictionary controls
the point size at which overshoot suppression ceases. This point
size varies with the number of device pixels per inch available on
the device where the font program is being rendered.

• For point sizes that occupy fewer device pixels than the
BlueScale value results in for a given device, overshoot sup-
pression is performed. All features falling in an alignment zone
are rendered at the same pixel height.

• For point sizes that occupy the same number or a greater
number of device pixels than the BlueScale value results in,
overshoot suppression is turned off, thus allowing overshoots
to occur. (This behavior may be modified by the optional
BlueShift setting; see the definition of BlueShift, that follows.)

40 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 5

The BlueScale value is a number directly related to the number of
pixels tall that one character space unit will be before overshoot
suppression is turned off. The default value of BlueScale is
.039625, which corresponds to 10 points at 300 dpi. A simple for-
mula that relates point size as rendered on a 300-dpi device to the
BlueScale value is:

BlueScale = (pointsize − 0.49) ÷ 240

The formula provides a convenient number that font program
designers can use to determine at what integer point size over-
shoot suppression should be off. However, the exact point size at
which overshoot suppression ceases is actually 0.49 points less (at
9.51 points using the default value of BlueScale) than the value
of pointsize used in the formula. Adobe recommends using the
adjustment shown in the formula so that the change in over-
shoot suppression behavior occurs at an exact point size unlikely
to be used in practice.

For example, if you wish overshoot suppression to turn off at 11
points on a 300-dpi device, you should set BlueScale to
(11 − 0.49) ÷ 240 or 0.04379. With this one setting of BlueScale,
overshoot suppression will turn off at proportionately smaller
point sizes on higher resolution output devices or larger point
sizes on lower-resolution devices such as displays. A typical
BlueScale statement is:

/BlueScale .04379 def

Note There is a mandatory restriction on the BlueScale value and the
maximum height of an alignment zone that is best described in rela-
tion to the 300-dpi point size discussed above. The product of
(pointsize − 0.49) × (maximum alignment zone height) must be less
than 240. For example, if the maximum alignment zone height is 23
in some font program, then the overshoot suppression turnoff point size
at 300 dpi can be 10 but not 11. This restriction ensures that overshoot
suppression will turn off before the overshoot reaches a full device pixel.

5.7 BlueShift

The optional BlueShift entry in the Private dictionary adds
another capability to the treatment of overshoot behavior.

The value of BlueShift is an integer that indicates a character
space distance beyond the flat position of alignment zones at
which overshoot enforcement for character features occurs. The

Chapter 5: Private Dictionary 41

Type 1 Specifications 2/12/90 final chapter 5

default value of BlueShift is 7. The single setting of BlueShift
applies to all alignment zones, regardless of where their over-
shoot positions lie.

When a character’s size is less than that expressed by BlueScale,
character features that fall within alignment zones have their
overshoots suppressed. For characters larger than the BlueScale
size, character features that fall beyond the flat position of an
alignment zone (above for top-zones, below for bottom-zones) by
a character space distance equal to or greater than the value of
BlueShift will overshoot, while character features closer to the flat
position than the BlueShift value will overshoot only if their
device space distance is at least one-half pixel.

The BlueShift value must obey a restriction if the Flex mechanism
is used. For details, see section 8.3, “Flex,” in Chapter 8, “Using
Subroutines.”

5.8 BlueFuzz

The optional BlueFuzz entry in the Private dictionary is an inte-
ger value that specifies the number of character space units to
extend (in both directions) the effect of an alignment zone on a
horizontal stem. If the top of a horizontal stem is within BlueFuzz
units (in character space) outside of a top-zone, the interpreter
will act as if the stem top were actually within the zone; the same
holds for the bottoms of horizontal stems in bottom-zones. The
default value of BlueFuzz is 1.

BlueFuzz has been a convenient means for compensating for
slightly inaccurate coordinate data. The effect of a non-zero value
for BlueFuzz can usually be better achieved by adjusting the sizes
of the alignment zones. Adobe suggests that new font programs
not rely on it and disable the feature by explicitly setting
BlueFuzz to 0 in the Private dictionary. For example:

/BlueFuzz 0 def

Note Because a non-zero value for BlueFuzz extends the range of alignment
zones, alignment zones must be declared at least (2 × BlueFuzz + 1)
units apart from each other. Therefore, a default BlueFuzz value of 1
implies that alignment zones should be at least 3 units apart from each
other.

42 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 5

5.9 Stem Width Information

There is a mechanism to tell Type 1 BuildChar about standard
stem widths in a font so that Type 1 BuildChar can ensure con-
sistency at small sizes. If a particular stem is slightly wider or
narrower than standard, either by design or as a result of a small
error in creating the font program, then at small sizes where a
single pixel difference would be very noticeable, Type 1 Build-
Char can render the stem as though it had the standard width.
However, at large sizes where a single pixel difference will pro-
duce only a subtle visual effect, the stem will be allowed to
deviate from the standard.

When the difference between a standard stem width and a partic-
ular stem width is small, the standard width is used. For example,
if at 10 points a standard stem width corresponds to 1.4 pixels
wide and a particular stem is 1.6 pixels wide, both can be ren-
dered as a 1-pixel wide stem. However, at 100 points the standard
stem would be rendered as 14 pixels wide and the particular stem
would be rendered as 16 pixels wide. The information that Type
1 BuildChar needs appears in the following Private dictionary
entries.

The entry StdHW is an array with only one real number entry
expressing the dominant width of horizontal stems (measured
vertically in character space units). For example:

/StdHW [32] def

The entry StdVW is an array with only one real number entry
expressing the dominant width of vertical stems (measured hori-
zontally in character space units). Typically, this will be the width
of straight stems in lower case letters. (For an italic font program,
give the width of the vertical stem measured at an angle perpen-
dicular to the stem direction.) For example:

/StdVW [85] def

The entry StemSnapH is an array of up to 12 real numbers of the
most common widths (including the dominant width given in
the StdHW array) for horizontal stems (measured vertically).
These widths must be sorted in increasing order. For example:

/StemSnapH [32 41] def

Chapter 5: Private Dictionary 43

Type 1 Specifications 2/12/90 final chapter 5

The entry StemSnapV is an array of up to 12 real numbers of the
most common widths (including the dominant width given in
the StdVW array) for vertical stems (measured horizontally).
These widths must be sorted in increasing order. For example,
you might include widths for straight and curved stems in upper
and lower case letters. For an italic font, this array should be
empty. For example:

/StemSnapV [85 102] def

If these stem hints are not present in the Private dictionary, then
each stem is rendered according to its own definition (as modi-
fied by any other hints present in the font program).

The StdHW, StdVW, StemSnapH, and StemSnapV entries are rel-
atively new additions to the Type 1 hinting system. Currently
they are interpreted by ATM software version 1.2 (and later).
These features will also be recognized by future versions of the
PostScript interpreter.

5.10 ForceBold

At small sizes on low-resolution devices (such as display screens),
features of bold characters may be rendered at only 1 pixel of
thickness. Since this is the minimum thickness possible on a
raster output device, normal (non-bold) characters also appear
with 1-pixel wide features. If the boldness property is so impor-
tant at these small sizes that bold characters should continue to
appear thicker than normal characters, some Type 1 font inter-
preters may apply special techniques to thicken bold character
features.

If the Private dictionary contains an entry named ForceBold, this
behavior can be controlled explicitly. The value associated with
ForceBold must be the Boolean value “true” or “false.” If the
value is “true,” then in situations where character stems would
normally be rendered at 1-pixel thick, a Type 1 font interpreter
may thicken the stem. If the value is “false,” then a Type 1 font
interpreter will not perform a special thickening operation. To set
ForceBold, use the statement:

/ForceBold true def

Adobe strongly advises font program developers to use ForceBold
to direct font interpreters as to which bold thickening behavior
is desired.

44 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 5

5.11 LanguageGroup

Certain groups of written languages share broad aesthetic charac-
teristics. Identification of such language groups can prove useful
for accurate character rendering.

The value of the entry LanguageGroup is an integer that indi-
cates the language group of the font program. If the Private
dictionary does not contain this entry, or if the given value is not
recognized by Type 1 BuildChar, then the value of
LanguageGroup defaults to zero. At this time, Type 1 BuildChar
recognizes only two language groups, identified as group zero
and group one. The future identification of other values for the
LanguageGroup entry is reserved by Adobe Systems.

Language group 0 consists of languages that use Latin, Greek,
Cyrillic, and similar alphabets. Since the value of the
LanguageGroup entry defaults to 0, a font program correspond-
ing to one of these languages does not need to contain this entry.

Language group 1 consists of Chinese ideographs and similar
character sets, including Japanese Kanji and Korean Hangul. Font
programs corresponding to one of these languages should con-
tain the Private dictionary entry:

/LanguageGroup 1 def

For compatibility with older PostScript interpreters, creators of
font programs specifying language group 1 must also include the
RndStemUp entry in the Private dictionary:

/RndStemUp false def

The RndStemUp entry has been superseded by the
LanguageGroup entry. No reference at all to the name
RndStemUp should be made in any font program unless it
belongs to language group one.

Chapter 5: Private Dictionary 45

Type 1 Specifications 2/12/90 final chapter 5

5.12 lenIV

The lenIV entry is an integer specifying the number of random
bytes at the beginning of charstrings for charstring encryption.
The default value of lenIV is 4.

To be compatible with version 23.0 of the PostScript interpreter
(found in the original LaserWriter®), the value of lenIV should be
set to 4. If compatibility with version 23.0 printers is not neces-
sary, lenIV can be set to 0 or 1 to save storage.

5.13 Compatibility Entries

The MinFeature and password entries must be included in the
Private dictionary to allow Type 1 BuildChar to function
properly.

All Type 1 font programs should include the following assign-
ments in the Private dictionary:

/MinFeature {16 16} def
/password 5839 def

5.14 ExpansionFactor

The optional ExpansionFactor entry is a real number that gives a
limit for changing the size of a character bounding box during
the processing that adjusts the sizes of counters in fonts of Lan-
guageGroup 1. The default value of ExpansionFactor is 0.06. At
small point sizes or low resolutions, the system may have to
accept irregular counters rather than violate this limit. Bar code
fonts or logos that need counter control may benefit by setting
LanguageGroup to 1 and increasing the ExpansionFactor limit to
a larger amount such as 0.5 or more. For example:

/ExpansionFactor 0.5 def

46 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 5

Type 1 Specifications 2/12/90 final chapter 6

47

CHAPTER 6

The CharStrings dictionary holds a collection of name-procedure
pairs. The procedures to which the names refer produce the font’s
character outlines. Character procedures can also call subroutines
(located in the Private dictionary) that produce similar parts of
characters, thus reducing storage requirements. The charstring
procedures also contain character level hints.

6.1 Charstring Encoding

A charstring is an encrypted sequence of unsigned 8-bit bytes
that encode integers and commands. Type 1 BuildChar, when
interpreting a charstring, will first decrypt it and then will decode
its bytes one at a time in sequence. The value in a byte indicates
a command, a number, or subsequent bytes that are to be inter-
preted in a special way.

Once the bytes are decoded into numbers and commands, the
execution of these numbers and commands proceeds in a
manner similar to the operation of the PostScript language. Type
1 BuildChar uses its own operand stack, called the Type 1 Build-
Char operand stack, that is distinct from the PostScript interpreter
operand stack. This stack holds up to 24 numeric entries. A
number, decoded from a charstring, is pushed onto the Type 1
BuildChar operand stack. A command expects its arguments in
order on this operand stack with all arguments generally taken
from the bottom of the stack (first argument bottom-most); how-
ever, some commands, particularly the subroutine commands,
normally work from the top of the stack. If a command returns
results, they are pushed onto the Type 1 BuildChar operand stack
(last result topmost).

In the following discussion, all numeric constants are decimal
numbers.

CharStrings Dictionary

48 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 6

6.2 Charstring Number Encoding

A charstring byte containing the values from 32 through 255
inclusive indicates an integer. These values are decoded in four
ranges.

1. A charstring byte containing a value, v, between 32 and 246
inclusive, indicates the integer v − 139. Thus, the integer values
from −107 through 107 inclusive may be encoded in a single
byte.

2. A charstring byte containing a value, v, between 247 and 250
inclusive, indicates an integer involving the next byte, w,
according to the formula:

 [(v − 247) × 256] + w + 108

Thus, the integer values between 108 and 1131 inclusive can
be encoded in 2 bytes in this manner.

3. A charstring byte containing a value, v, between 251 and 254
inclusive, indicates an integer involving the next byte, w,
according to the formula:

− [(v − 251) × 256] − w − 108

Thus, the integer values between −1131 and −108 inclusive can
be encoded in 2 bytes in this manner.

4. Finally, if the charstring byte contains the value 255, the next
four bytes indicate a two’s complement signed integer. The
first of these four bytes contains the highest order bits, the
second byte contains the next higher order bits and the fourth
byte contains the lowest order bits. Thus, any 32-bit signed
integer may be encoded in 5 bytes in this manner (the 255 byte
plus 4 more bytes).

Note Numbers with absolute values greater than 32,000 must be followed
by a div operator such that the result of the div is less than 32,000.

6.3 Charstring Command Encoding

Charstring commands are encoded in 1 or 2 bytes.

Single byte commands are encoded in 1 byte that contains a
value between 0 and 31 inclusive. Not all possible command

Chapter 6: CharStrings Dictionary 49

Type 1 Specifications 2/12/90 final chapter 6

encoding values are listed. The command values that are omitted
are special purpose commands that are not used in any down-
loadable Type 1 font program, or they are reserved.

If a command byte contains the value 12, then the value in the
next byte indicates a command. This “escape” mechanism allows
many extra commands to be encoded. These 2-byte commands
are not used as often as the 1-byte commands; this encoding
technique helps to minimize the length of charstrings. Refer to
Appendix 2 for a summary of the charstring commands and their
encoding values.

6.4 Charstring Command List

The Type 1 font program charstring commands are divided into
five groups by function:

• Commands for starting and finishing a character’s outline

• Path construction commands

• Hint commands

• Arithmetic commands

• Subroutine commands

The following definitions use a format similar to that used in the
PostScript Language Reference Manual. Parentheses following the
command name either include the command value that repre-
sents this command in a charstring byte, or the two values
(beginning with 12) that represent a 2-byte command.

Many commands take their arguments from the bottom-most
entries in the Type 1 BuildChar stack; this behavior is indicated
by the stack bottom symbol () appearing to the left of the first
argument. Commands that clear the operand stack are indicated
by the stack bottom symbol () in the result position of the com-
mand definition.

Because of this stack-clearing behavior, in general, operands may
not be piled up on the Type 1 BuildChar operand stack for later
removal by a sequence of commands. Operands generally may
be supplied only for the next command. Notable exceptions
occur with subroutine calls and with the div command.

50 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 6

Commands for Starting and Finishing

endchar – endchar (14)
finishes a charstring outline definition and must be the last com-
mand in a character’s outline (except for accented characters
defined using seac). When endchar is executed, Type 1 BuildChar
performs several tasks. It executes a setcachedevice operation,
using a bounding box it computes directly from the character
outline and using the width information acquired from a previ-
ous hsbw or sbw operation. (Note that this is not the same order
of events as in Type 3 Fonts.) BuildChar then calls a special ver-
sion of fill or stroke depending on the value of PaintType in the
font dictionary. The Type 1 font format supports only PaintType
0 (fill) and 2 (outline). Note that this single fill or stroke implies
that there can be only one path (possibly containing several sub-
paths) that can be created to be filled or stroked by the endchar
command.

hsbw sbx wx hsbw (13)
sets the left sidebearing point at (sbx, 0) and sets the character
width vector to (wx, 0) in character space. This command also
sets the current point to (sbx, 0), but does not place the point in
the character path. Use rmoveto for the first point in the path.
The name hsbw stands for horizontal sidebearing and width; hor-
izontal indicates that the y component of both the sidebearing
and width is 0. Either sbw or hsbw must be used once as the first
command in a character outline definition. It must be used only
once. In non-marking characters, such as the space character, the
left sidebearing point should be (0, 0).

seac asb adx ady bchar achar seac (12 6)
for standard encoding accented character, makes an accented char-
acter from two other characters in its font program. The asb
argument is the x component of the left sidebearing of the
accent; this value must be the same as the sidebearing value given
in the hsbw or sbw command in the accent’s own charstring. The
origin of the accent is placed at (adx, ady) relative to the origin of
the base character. The bchar argument is the character code of
the base character, and the achar argument is the character code
of the accent character. Both bchar and achar are codes that these
characters are assigned in the Adobe StandardEncoding vector,
given in an Appendix in the PostScript Language Reference Manual.
Furthermore, the characters represented by achar and bchar must
be in the same positions in the font’s encoding vector as the posi-
tions they occupy in the Adobe StandardEncoding vector. If the

Chapter 6: CharStrings Dictionary 51

Type 1 Specifications 2/12/90 final chapter 6

name of both components of an accented character do not
appear in the Adobe StandardEncoding vector, the accented char-
acter cannot be built using the seac command.

The FontBBox entry in the font dictionary must be large enough
to accommodate both parts of the accented character. The sbw or
hsbw command that begins the accented character must be the
same as the corresponding command in the base character.
Finally, seac is the last command in the charstring for the
accented character because the accent and base characters’ char-
strings each already end with their own endchar commands.

The use of this command saves space in a Type 1 font program,
but its use is restricted to those characters whose parts are defined
in the Adobe StandardEncoding vector. In situations where use of
the seac command is not possible, use of Subrs subroutines is a
more general means for creating accented characters.

sbw sbx sby wx wy sbw (12 7)
sets the left sidebearing point to (sbx, sby) and sets the character
width vector to (wx, wy) in character space. This command also
sets the current point to (sbx, sby), but does not place the point
in the character path. Use rmoveto for the first point in the path.
The name sbw stands for sidebearing and width; the x and y com-
ponents of both the left sidebearing and width must be specified.
If the y components of both the left sidebearing and the width are
0, then the hsbw command should be used. Either sbw or hsbw
must be used once as the first command in a character outline
definition. It must be used only once.

Path Construction Commands

closepath – closepath (9)
closepath closes a subpath. Adobe strongly recommends that all
character subpaths end with a closepath command, otherwise
when an outline is stroked (by setting PaintType equal to 2) you
may get unexpected behavior where lines join. Note that, unlike
the closepath command in the PostScript language, this com-
mand does not reposition the current point. Any subsequent
rmoveto must be relative to the current point in force before the
Type 1 font format closepath command was given.

Make sure that any subpath section formed by the closepath
command intended to be zero length, is zero length. If not, the
closepath command may cause a “spike” or “hangnail” (if the
subpath doubles back onto itself) with unexpected results.

52 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 6

hlineto dx hlineto (6)
for horizontal lineto. Equivalent to dx 0 rlineto.

hmoveto dx hmoveto (22)
for horizontal moveto. Equivalent to dx 0 rmoveto.

hvcurveto dx1 dx2 dy2 dy3 hvcurveto (31)
for horizontal-vertical curveto. Equivalent to dx1 0 dx2 dy2 0 dy3
rrcurveto. This command eliminates two arguments from an
rrcurveto call when the first Bézier tangent is horizontal and the
second Bézier tangent is vertical.

rlineto dx dy rlineto (5)
behaves like rlineto in the PostScript language.

rmoveto dx dy rmoveto (21)
behaves like rmoveto in the PostScript language.

rrcurveto dx1 dy1 dx2 dy2 dx3 dy3 rrcurveto (8)
for relative rcurveto. Whereas the arguments to the rcurveto
operator in the PostScript language are all relative to the current
point, the arguments to rrcurveto are relative to each other.
Equivalent to dx1 dy1 (dx1+dx2) (dy1+dy2) (dx1+dx2+dx3) (dy1+
dy2+dy3) rcurveto.

vhcurveto dy1 dx2 dy2 dx3 vhcurveto (30)
for vertical-horizontal curveto. Equivalent to 0 dy1 dx2 dy2 dx3 0
rrcurveto. This command eliminates two arguments from an
rrcurveto call when the first Bézier tangent is vertical and the
second Bézier tangent is horizontal.

vlineto dy vlineto (7)
for vertical lineto. Equivalent to 0 dy rlineto.

vmoveto dy vmoveto (4)
for vertical moveto. This is equivalent to 0 dy rmoveto.

Hint Commands

dotsection – dotsection (12 0)
brackets an outline section for the dots in letters such as “i”,“ j”,
and “!”. This is a hint command that indicates that a section of a
charstring should be understood as describing such a feature,

Chapter 6: CharStrings Dictionary 53

Type 1 Specifications 2/12/90 final chapter 6

rather than as part of the main outline. For more details, see sec-
tion 8.2, “Dot Sections,” in Chapter 8, “Using Subroutines.”

hstem y dy hstem (1)
declares the vertical range of a horizontal stem zone (see the fol-
lowing section for more information about horizontal stem
hints) between the y coordinates y and y+dy, where y is relative to
the y coordinate of the left sidebearing point. Horizontal stem
zones within a set of stem hints for a single character may not
overlap other horizontal stem zones. Use hint replacement to
avoid stem hint overlaps. For more details on hint replacement,
see section 8.1, “Changing Hints Within a Character,” in Chapter
8, “Using Subroutines.”

hstem3 y0 dy0 y1 dy1 y2 dy2 hstem3 (12 2)
declares the vertical ranges of three horizontal stem zones
between the y coordinates y0 and y0 + dy0, y1 and y1 + dy1, and
between y2 and y2 + dy2, where y0, y1 and y2 are all relative to
the y coordinate of the left sidebearing point. The hstem3 com-
mand sorts these zones by the y values to obtain the lowest,
middle and highest zones, called ymin, ymid and ymax respec-
tively. The corresponding dy values are called dymin, dymid and
dymax. These stems and the counters between them will all be
controlled. These coordinates must obey certain restrictions:

• dymin = dymax

• The distance from ymin + dymin/2 to ymid + dymid/2 must
equal the distance from ymid + dymid/2 to ymax + dymax/2. In
other words, the distance from the center of the bottom stem
to the center of the middle stem must be the same as the dis-
tance from the center of the middle stem to the center of the
top stem.

If a charstring uses an hstem3 command in the hints for a char-
acter, the charstring must not use hstem commands and it must
use the same hstem3 command consistently if hint replacement
is performed.

The hstem3 command is especially suited for controlling the
stems and counters of symbols with three horizontally oriented
features with equal vertical widths and with equal white space
between these features, such as the mathematical equivalence
symbol or the division symbol.

54 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 6

vstem x dx vstem (3)
declares the horizontal range of a vertical stem zone (see the fol-
lowing section for more information about vertical stem hints)
between the x coordinates x and x+dx, where x is relative to the x
coordinate of the left sidebearing point. Vertical stem zones
within a set of stem hints for a single character may not overlap
other vertical stem zones. Use hint replacement to avoid stem
hint overlap. For more details on hint replacement, see section
8.1, “Changing Hints Within a Character,” in Chapter 8, “Using
Subroutines.”

vstem3 x0 dx0 x1 dx1 x2 dx2 vstem3 (12 1)
declares the horizontal ranges of three vertical stem zones
between the x coordinates x0 and x0 + dx0, x1 and x1 + dx1, and
x2 and x2 + dx2, where x0, x1 and x2 are all relative to the x coor-
dinate of the left sidebearing point. The vstem3 command sorts
these zones by the x values to obtain the leftmost, middle and
rightmost zones, called xmin, xmid and xmax respectively. The
corresponding dx values are called dxmin, dxmid and dxmax.
These stems and the counters between them will all be con-
trolled. These coordinates must obey certain restrictions
described as follows:

• dxmin = dxmax

• The distance from xmin + dxmin/2 to xmid + dxmid/2 must
equal the distance from xmid + dxmid/2 to xmax + dxmax/2. In
other words, the distance from the center of the left stem to
the center of the middle stem must be the same as the distance
from the center of the middle stem to the center of the right
stem.

If a charstring uses a vstem3 command in the hints for a charac-
ter, the charstring must not use vstem commands and it must use
the same vstem3 command consistently if hint replacement is
performed.

The vstem3 command is especially suited for controlling the
stems and counters of characters such as a lower case “m.”

Arithmetic Command

div num1 num2 div (12 12) quotient
behaves like div in the PostScript language.

Chapter 6: CharStrings Dictionary 55

Type 1 Specifications 2/12/90 final chapter 6

Subroutine Commands

callothersubr arg1 . . . argn n othersubr# callothersubr (12 16) –
is a mechanism used by Type 1 BuildChar to make calls on the
PostScript interpreter. Arguments argn through arg1 are pushed
onto the PostScript interpreter operand stack, and the PostScript
language procedure in the othersubr# position in the OtherSubrs
array in the Private dictionary (or a built-in function equivalent
to this procedure) is executed. Note that the argument order will
be reversed when pushed onto the PostScript interpreter operand
stack. After the arguments are pushed onto the PostScript inter-
preter operand stack, the PostScript interpreter performs a begin
operation on systemdict followed by a begin operation on the
font dictionary prior to executing the OtherSubrs entry. When
the OtherSubrs entry completes its execution, the PostScript
interpreter performs two end operations prior to returning to
Type 1 BuildChar charstring execution. Use pop commands to
retrieve results from the PostScript operand stack back to the
Type 1 BuildChar operand stack. See Chapter 8, “Using Subrou-
tines,” for details on using callothersubr.

callsubr subr# callsubr (10) –
calls a charstring subroutine with index subr# from the Subrs
array in the Private dictionary. Each element of the Subrs array is
a charstring encoded and encrypted like any other charstring.
Arguments pushed on the Type 1 BuildChar operand stack prior
to calling the subroutine, and results pushed on this stack by the
subroutine, act according to the manner in which the subroutine
is coded. These subroutines are generally used to encode
sequences of path commands that are repeated throughout the
font program, for example, serif outline sequences. Subroutine
calls may be nested 10 deep. See Chapter 8, “Using Subroutines,”
for other uses for subroutines, such as changing hints.

pop – pop (12 17) number
removes a number from the top of the PostScript interpreter oper-
and stack and pushes that number onto the Type 1 BuildChar
operand stack. This command is used only to retrieve a result
from an OtherSubrs procedure. For more details, see Chapter 8,
“Using Subroutines.”

return – return (11) –
returns from a Subrs array charstring subroutine (that had been
called with a callsubr command) and continues execution in the
calling charstring.

56 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 6

setcurrentpoint x y setcurrentpoint (12 33)
sets the current point in the Type 1 font format BuildChar to
(x, y) in absolute character space coordinates without performing
a charstring moveto command. This establishes the current point
for a subsequent relative path building command. The
setcurrentpoint command is used only in conjunction with
results from OtherSubrs procedures.

6.5 Character Level Hints

Within a character, font program developers can add declarative
hints to indicate to Type 1 BuildChar that a horizontal or vertical
stem occurs between certain coordinates. These same hints are
used to indicate stem-like round features, such as the leftmost,
rightmost, topmost, and bottom-most parts of the letter “o”. It is
important to communicate to Type 1 BuildChar exactly where
such features occur so that it can apply special techniques to
these parts of the outline.

The vstem hint, for each vertical stem (such as the legs of the
letter “n” or the leftmost and rightmost sections of the letter “o”)
takes two x values (expressed as x and delta-x) as arguments. These
two x values indicate the horizontal range that the vertical stem’s
width occupies in character space. Similarly, the hstem hint, for
each horizontal stem (such as the arms of the letter “E” or the
topmost and bottom-most sections of the letter “o”) takes two y
values (expressed as y and delta-y) that indicate the vertical range
that the horizontal stem’s width occupies in character space. The
vstem and hstem hints are called stem hints; they are typically the
most numerous hints in a font program.

Stem hint zones of the same direction (e.g. two hstem hints)
should not overlap each other within a character. See section 8.1,
“Changing Hints Within a Character,” in Chapter 8, “Using Sub-
routines,” for a description of how to use hint replacement to
avoid stem hint overlaps.

Chapter 6: CharStrings Dictionary 57

Type 1 Specifications 2/12/90 final chapter 6

Figure 6a. Character level stem hints (horizontal, vertical, and ghost
stem hints)

Some hstem hints are necessary for interaction with the align-
ment zones declared through the BlueValues and OtherBlues
hints. In order for a character’s vertical features to be considered
for alignment control, that character must have an hstem hint
specified at or in an alignment zone. In some characters this hap-
pens naturally. For example, in a capital letter “E,” there are at
least three hstem hints declared for the three horizontal stems.
The top stem’s hstem hint should reach up to the cap-height, and
the bottom stem’s hstem hint should extend down to the base-
line. These two hstem hints interact naturally with normal
alignment zones.

In a sans serif capital letter “I”, however, there are no horizontal
stems for these hstem hints. In order to have the cap-height and
baseline alignments apply to this character as well, the character
needs hstem hints for non-existent horizontal stems at these
positions also. These so-called “ghost” stems must be created
with a stem height of 20 or 21—either is acceptable. They must
describe a y coordinate range that is inside the y coordinate range
of the character, not above a top nor below a bottom.

An hstem hint may not have its top at or in a top-zone and have
its bottom at or in a bottom-zone. In the capital “I” example,
there cannot be just one hstem hint that stretches from baseline
to the cap-height line; instead one hstem should be at the cap-
height and another should be at the baseline.

hstem

vstem
hstem

hstem

vstem

vstem

hstem

hstem

hstem hstem

Horizontal and vertical stems Ghost stems

58 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 6

6.6 Encoding Example

To illustrate the composition and encoding of a charstring, con-
sider the following example of a block letter “C”. In character
space this letter measures 700 units by 700 units. Its width is 800
units (horizontal), and it is centered within this width; thus its
left sidebearing is 50 units wide. Each stem is 100 units wide. This
example shows how to declare these stem widths as character
level hints.

The charstring definition begins by writing an outline in the
PostScript language in character space integer coordinates:

50 0 moveto 700 0 rlineto 0 100 rlineto -600 0 rlineto
0 500 rlineto 600 0 rlineto 0 100 rlineto -700 0 rlineto
closepath

Next, add sidebearing, width and hint information. Since the
moveto command is not in the charstring command set, change
it to rmoveto, taking advantage of the hsbw command’s setting
of Type 1 BuildChar’s current point. Note that the vstem and
hstem arguments are relative to the left sidebearing point.

50 800 hsbw 0 100 vstem 0 100 hstem 600 100 hstem
0 0 rmoveto 700 0 rlineto 0 100 rlineto -600 0 rlineto
0 500 rlineto 600 0 rlineto 0 100 rlineto -700 0 rlineto
closepath

The initial rmoveto command (or its equivalent) is required, as
the hsbw command only sets the current point but does not actu-
ally place that point in the character path. In this example, the
first point on the path is the same as the left sidebearing point,
thus the two zero arguments to the rmoveto command. In other
character outlines, the initial rmoveto point need not be the
same as the left sidebearing point.

Note that there are many horizontal and vertical rlineto com-
mands. Modify them to hlineto and vlineto commands for space
efficiency. Finish the character with an endchar command.

50 800 hsbw 0 100 vstem 0 100 hstem 600 100 hstem
0 hmoveto 700 hlineto 100 vlineto -600 hlineto
500 vlineto 600 hlineto 100 vlineto -700 hlineto
closepath endchar

Chapter 6: CharStrings Dictionary 59

Type 1 Specifications 2/12/90 final chapter 6

Encode the integers according to charstring number encoding:

189 249 180 hsbw 139 239 vstem 139 239 hstem 248 236 239 hstem
139 hmoveto 249 80 hlineto 239 vlineto 252 236 hlineto
248 136 vlineto 248 236 hlineto 239 vlineto 253 80 hlineto
closepath endchar

Encode the commands according to charstring command encod-
ing:

189 249 180 13 139 239 3 139 239 1 248 236 239 1
139 22 249 80 6 239 7 252 236 6
248 136 7 248 236 6 239 7 253 80 6
9 14

For purposes of illustrating this example, this sequence of num-
bers is rewritten in ASCII hexadecimal, and shown as a sequence
of PostScript language code:

/C <BDF9B40D8BEF038BEF01F8ECEF01
 8B16F95006EF07FCEC06
 F88807F8EC06EF07FD5006
 090E> def

All that remains is to apply charstring encryption to this hexa-
decimal-encoded binary string, and this charstring is complete.

Remember that the actual format required by Type 1 BuildChar
is not this ASCII hexadecimal form of charstring, but the binary
form of the charstring in the following manner:

/C 37 RD ~37~binary~bytes~ ND

60 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 6

Type 1 Specifications 2/1/90 proof 1 chapter 7

61

CHAPTER 7

Type 1 font programs incorporate two types of encryption: char-
string encryption and eexec encryption.

The encoded charstrings are encrypted first. This level of encryp-
tion is called charstring encryption; Type 1 BuildChar works only
with encoded and encrypted charstrings. A section of the Type 1
font program, including the Private and CharStrings dictionaries,
is again encrypted using another layer of encryption called eexec
encryption. This layer of encryption is intended to protect some of
the hint information in the Private dictionary from casual
inspection, and it coincidentally provides an ASCII hexadecimal
form of this part of the font program so that it can be passed
through communication channels that accept only 7-bit ASCII.

7.1 Encryption Method

Both eexec and charstring encryption employ the same encryp-
tion method. This method is a combination of three techniques.

• A pseudo-random number generator generates a sequence of
keys that are combined with the plaintext to produce the
ciphertext.

• Cipher feedback is employed in the generation of these keys;
in other words, each byte of ciphertext is used in the produc-
tion of the next key.

• Each plaintext sequence has a semi-random sequence of bytes
inserted at the beginning, so that repeated encryption of the
same plaintext will produce different ciphertexts.

Encryption

Type 1 Specifications 2/1/90 proof 1 chapter 7

62 Adobe Type 1 Font Format

The following algorithms for encryption and decryption are
nearly identical, but they differ subtly because it is always the
ciphertext byte that is used to generate the next key. It is neces-
sary to use two separate procedures to handle encryption and
decryption.

To Encrypt a Sequence of Plaintext Bytes to Produce a
Sequence of Ciphertext Bytes

1. Generate n random bytes to be additional plaintext bytes at
the beginning of the sequence of plaintext bytes, for some
value of n.

2. Initialize an unsigned 16-bit integer variable R to the encryp-
tion key.

3. For each 8-bit byte, P, of plaintext (beginning with the newly
added random bytes) execute the following steps:

a. Assign the high order 8 bits of R to a temporary variable, T.

b. Exclusive-OR P with T, producing a ciphertext byte, C.

c. Compute the next value of R by the formula ((C + R) × c1 +
c2) mod 65536, where c1 is 52845 (decimal) and c2 is 22719
(decimal).

This encryption step can be performed by the following C lan-
guage program, where r is initialized to the key for the encryption
type:

unsigned short int r;
unsigned short int c1 = 52845;
unsigned short int c2 = 22719;

unsigned char Encrypt(plain) unsigned char plain;
{unsigned char cipher;
cipher = (plain ^ (r>>8));
r = (cipher + r) * c1 + c2;
return cipher;
}

Type 1 Specifications 2/1/90 proof 1 chapter 7

Chapter 7: Encryption 63

To Decrypt a Sequence of Ciphertext Bytes to Produce the
Original Sequence of Plaintext Bytes

1. Initialize an unsigned 16-bit integer variable R to the encryp-
tion key (the same key as used to encrypt).

2. For each 8-bit byte, C, of ciphertext the following steps are exe-
cuted:

a. Assign the high order 8 bits of R to a temporary variable, T.

b. Exclusive-OR C with T, producing a plaintext byte, P.

c. Compute the next value of R by the formula ((C + R) × c1 +
c2) mod 65536, where c1 and c2 are the same constants that
were used to encrypt.

3. Discard the first n bytes of plaintext; these are the random
bytes added during encryption. The remainder of the plaintext
bytes are the original sequence.

The decryption step can be performed by the following C lan-
guage program, where r is initialized to the key for the encryption
type:

unsigned short int r;
unsigned short int c1 = 52845;
unsigned short int c2 = 22719;

unsigned char Decrypt(cipher) unsigned char cipher;
{unsigned char plain;
plain = (cipher ^ (r>>8));
r = (cipher + r) * c1 + c2;
return plain;
}

7.2 eexec Encryption

In eexec encryption, the initial key for the variable R is 55665
(decimal). The number of random bytes, n, is 4.

The eexec operator is capable of decrypting input in either binary
or ASCII hexadecimal form. There are several restrictions:

• To distinguish between binary and ASCII hexadecimal input,
the first 4 ciphertext bytes must obey certain restrictions.
Remember that two ASCII hexadecimal characters represent 1
ciphertext byte, while 1 binary byte represents 1 ciphertext
byte.

Type 1 Specifications 2/1/90 proof 1 chapter 7

64 Adobe Type 1 Font Format

• The first ciphertext byte must not be an ASCII white space
character code (blank, tab, carriage return or line feed).

• At least one of the first 4 ciphertext bytes must not be one of
the ASCII hexadecimal character codes (a code for 0-9, A-F, or
a-f). These restrictions can be satisfied by adjusting the initial
random plaintext bytes as necessary.

If the eexec-encrypted text is supplied in binary form, then every
byte is considered part of the ciphertext. If the eexec-encrypted
text is supplied in ASCII hexadecimal form, then ASCII white
space characters (blank, tab, carriage return and line feed) may be
freely interspersed within the encrypted text, except in the first
eight characters.

Note It is possible not to use eexec encryption; however, part of the file would
then be in binary, and might cause difficulty when transferring the font
program over a communications line.

7.3 Charstring Encryption

In charstring encryption, the initial key for the variable R is 4330
(decimal). The number of random bytes, n, is set within the font.
By default, n is 4. However, if an entry name lenIV is present in
the Private dictionary, then n is the value associated with lenIV.
(Version 23.0 of the PostScript interpreter requires n to be 4.)

Unlike eexec encryption, charstring encryption imposes no
restrictions on the values of the initial ciphertext bytes.

A continuation of the encoding example in section 6.6 shows
how the charstring can be encrypted. Recall that the charstring
looked like

BDF9B40D8BEF038BEF01F8ECEF018B16F9
5006EF07FCEC06F88807F8EC06EF07FD5006090E

in ASCII hexadecimal notation. These 74 ASCII hexadecimal
characters represent 37 plaintext bytes of charstring. Generate
four random plaintext bytes to insert at the front of this plaintext
charstring. This example uses four zeros (for ease of explanation),
resulting in this plaintext:

00000000BDF9B40D8BEF038BEF01F8ECEF018B16F9
5006EF07FCEC06F88807F8EC06EF07FD5006090E

Type 1 Specifications 2/1/90 proof 1 chapter 7

Chapter 7: Encryption 65

Apply charstring encryption to produce the following 41 bytes of
ciphertext expressed in ASCII hexadecimal:

10BF31704FAB5B1F03F9B68B1F39A66521B1841F14
81697F8E12B7F7DDD6E3D7248D965B1CD45E2114

When this encoded and encrypted charstring is expressed in
binary form, it is ready for inclusion in a Type 1 font program.
The charstring would be inserted in the CharStrings dictionary as
follows:

/C 41 RD ~41~binary~bytes~ ND

If eexec encryption is to be used, it still remains to be applied
over the whole of the Private and CharStrings dictionaries. This
example does not show this additional encryption step.

Type 1 Specifications 2/1/90 proof 1 chapter 7

66 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 8

67

CHAPTER 8

A Type 1 font program uses two arrays of subroutines, Subrs and
OtherSubrs. Uses for subroutines include:

• Reducing the storage requirements of a font program by
combining the program statements that describe common
elements of the characters in the font.

• Subrs 0 through 2 work with the Flex feature.

• Subrs 3 works with hint replacement.

• Subrs 4 and higher work with charstring calls.

• OtherSubrs 0 through 2 implement the Flex feature.

• OtherSubrs 3 implements hint replacement.

The Subrs array contains sections of outlines encoded and
encrypted as charstrings, and, when hint replacement is required,
sequences of stem hint commands. When a font contains
repeated elements, such as serifs, equal sized bowls, and so forth,
they may be candidates for charstring subroutines.

Note that the charstring command set includes only relative
forms of path building commands. For example, rmoveto and
rlineto are included, but moveto and lineto are not. Using rela-
tive motion commands facilitates the reuse of subroutines for
sections of character outlines, regardless of their absolute place-
ment within the character.

An element of the Subrs array is a charstring, encoded and
encrypted separately in the same way as charstrings in the
CharStrings dictionary. A charstring subroutine must end with
the return command. These subroutines are called with the

Using Subroutines

68 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 8

callsubr command, using the index in the Subrs array as the argu-
ment. Charstring subroutines may call other subroutines, to a
depth of 10 calls.

Using charstring subroutines is not a requirement of a Type 1
font program. However, their use contributes greatly to reducing
storage space.

The Adobe® Type Library uses the OtherSubrs mechanism for the
hint replacement function and the Flex function. These
OtherSubrs procedures work by using some coordinated Subrs
entries as well. All Adobe Type 1 font programs that use these
functions use them in precisely the same way. As a result, the
semantics of the PostScript language procedures included in the
OtherSubrs array have stabilized to the point where the first four
OtherSubrs entries and the first four Subrs entries have fixed
meanings. Some Type 1 font rasterization programs such as the
Adobe Type Manager software product ignore the PostScript lan-
guage definitions of the OtherSubrs entries, choosing internal
code for the particular functions according to the entry number.
However, in order to work with the Type 1 BuildChar in Post-
Script interpreters, some PostScript language implementation of
the OtherSubrs entries must be included in any Type 1 font pro-
gram that uses these functions. The PostScript language code
used in Adobe Type 1 font programs is listed in Appendix 3,
“OtherSubrs Programs.”

OtherSubrs entries beyond the first four are reserved for future
extensions. Each new OtherSubrs entry will be designed so that
it can be safely treated by an interpreter that does not understand
its semantics. However, the first four OtherSubrs entries cannot
be so ignored; ignoring them will result in improper execution of
the charstring.

An OtherSubrs entry is invoked by the callothersubr command.
This command takes (from the top of the Type 1 BuildChar oper-
and stack down) the index number of the OtherSubrs entry, the
number of arguments that entry expects, and the actual numeric
arguments.

The complete calling sequence for an OtherSubrs procedure is:

arg1 arg2 . . . argn n othersubr# callothersubr pop . . . pop

Chapter 8: Using Subroutines 69

Type 1 Specifications 2/12/90 final chapter 8

The pop commands following the subroutine call transfer results
from the PostScript operand stack to the Type 1 BuildChar oper-
and stack. The number of pop commands following the call may
not exceed the number of arguments, n. The pop commands, if
any, must immediately follow the callothersubr command with
no intervening commands.

If the entry number, othersubr#, is not one that a Type 1 font
interpreter recognizes, then the results for the pop commands
must be taken from the arguments. In this case, the first pop
command receives arg1, the second pop command receives arg2,
etc., with extra arguments discarded. If the Type 1 font inter-
preter has access to a PostScript language interpreter, it can
invoke the OtherSubrs entry with the arguments as described
under the callothersubr command, and the pop commands, if
any, receive their values from the PostScript operand stack. In any
case, the first four OtherSubrs entries must be handled according
to their semantics as defined in this document.

8.1 Changing Hints Within a Character

The stem hints, vstem and hstem, affect the treatment of all sub-
sequent coordinates in a charstring. Occasionally a character
outline may require certain stem hints for some part of its out-
line, but different stem hints for other parts of its outline. After
executing the coordinate commands for the current set of stem
hints, these hints may be discarded and new stem hints given in
mid-outline.

To discard old stem hints and insert new ones, the new stem
hints must be placed in a charstring subroutine in the Subrs
array. This subroutine may be placed at any index in the Subrs
array except 0 through 3. Call this subroutine index subr#. This
subroutine must contain only stem hint commands and their
arguments. Then, at the point in the character outline where the
old hints are discarded and the new ones inserted, insert the fol-
lowing charstring sequence:

subr# 1 3 callothersubr pop callsubr

This sequence of code operates as follows. Entry 3 in the Other-
Subrs array is called with one argument, the entry in the Subrs
array that contains the new hint commands. The subr# is pushed
onto the PostScript interpreter operand stack, and the PostScript
interpreter executes the hint-changing procedure. The earliest

70 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 8

versions of the PostScript interpreter are not capable of dis-card-
ing hints in mid-outline, so the hint-changing procedure checks
if the PostScript interpreter is capable of performing this action.
If so, it leaves subr# on the PostScript interpreter operand stack. If
not, it removes subr# and it pushes the number 3 on the operand
stack. Back in the charstring, the pop command transfers the
number (either 3 or subr#) from the PostScript interpreter oper-
and stack to the Type 1 BuildChar operand stack. Finally this
subroutine is called by the callsubr command.

Entry 3 in the Subrs array is a charstring that does nothing. If the
Type 1 BuildChar version is not capable of discarding old hints in
mid-outline, then this mechanism ignores the new hints.

In charstring encoding (decimal) the above code sequence (with
the encoding of subr# shown as enc(subr#)) is:

enc(subr#) 140 142 12 16 12 17 10

Figure 8a. Changing hints within a character definition

Specifically, for the “E” shown in Figure 8a, the charstring defini-
tion would consist of the charstring commands in the following
example. Note where hint replacement is performed because of
the overlapping hstem hints for the serifs and stems. (The stem
hints for the serifs are narrower than those for the stems.)

vstem

hstem

vstem

vstem

hstem

hstem
vstem

hstem

hstem

Hints for first portion of path Hints for second portion of path

Chapter 8: Using Subroutines 71

Type 1 Specifications 2/12/90 final chapter 8

Example 1.

40 575 hsbw Set left sidebearing point and width
0 32 hstem Stem hint for bottom stem
350 32 hstem Stem hint for middle stem
668 32 hstem Stem hint for top stem
421 36 vstem Stem hint for top vertical serif
359 26 vstem Stem hint for middle vertical serif
86 97 vstem Stem hint for main vertical stem
0 hmoveto Move to first point in character path
% ...commands omitted... Define first portion of character path
4 1 3 callothersubr pop callsubr Change hints
% ...commands omitted... Define second portion of character

 path with new hints in place
closepath Close character path
endchar End charstring outline definition

Subroutine index number 4 in the Subrs array contains the fol-
lowing charstring sequence for defining new stem hints:

0 26 hstem Stem hint for bottom serif
674 26 hstem Stem hint for top serif
86 97 vstem Stem hint for main vertical stem
return Return to charstring execution

8.2 Dot Sections

In older PostScript interpreters not capable of performing hint
replacement, a special feature was employed for dot sections of a
character outline. These dot sections occur in letters such as “i”,
“j”, and “!”. Occasionally, the hints for character stems and align-
ment zones would interact poorly with these dots. Today, these
features are best handled by hint replacement as described above.
However, for compatibility with older PostScript interpreters and
older Type 1 font programs, the dotsection hint remains avail-
able, and current font programs still use dotsection for
compatibility with the oldest PostScript interpreters.

The dotsection hint command must be used in pairs at particular
places in the charstring. The first dotsection command should
occur immediately after the first rmoveto that begins the dot sec-
tion of a character. The second dotsection command should be
given immediately after the closepath that finishes the dot.

72 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 8

Here is an example of how dotsection commands should be
placed in a command sequence. This dot section sequence con-
sists of four rrcurveto commands:

. . . 0 120 rmoveto dotsection
0 -55 45 -45 55 0 rrcurveto 55 0 45 45 0 55 rrcurveto
0 55 -45 45 -55 0 rrcurveto -55 0 -45 -45 0 -55 rrcurveto
closepath dotsection . . .

8.3 Flex

Very shallow curves that are nearly horizontal or nearly vertical
in orientation are especially difficult to approximate on a digital
device. Examples of such curves include cupped serifs and
tapered stems. These features can be controlled with the Flex
mechanism, which uses OtherSubrs entries 0, 1, and 2.

The main idea behind Flex is that at small sizes slight humps and
dents in an outline should disappear, while at larger sizes they
should appear. Without Flex, a hump or a dent will be rendered
proportionately too large at small sizes to look right. These fea-
tures should appear when the subtle effect expected can be
rendered appropriately.

A particular curve sequence is a candidate for Flex only if the
arrangement of points on that curve meets certain conditions.

• The sequence must be formed by exactly two Bézier curve seg-
ments.

• The outer endpoints must be at the same x (or y) coordinate;
in other words, they must be precisely vertical or horizontal.

• The joining endpoint between the two curves and the control
points associated with this endpoint must all be positioned at
the horizontal (or vertical) extreme of the double curve sec-
tion. The joining point need not be equidistant from the
endpoints of the double curve section.

• The difference in x (or y) coordinates between an outer end-
point and the center (joining) endpoint (the flex height) must
be 20 units or less.

Chapter 8: Using Subroutines 73

Type 1 Specifications 2/12/90 final chapter 8

Figure 8b. Appropriate and inappropriate curves for the Flex
mechanism

For best results on cupped serifs (and any other shallow curves
that lie within an alignment zone), the joining (center) endpoint
should be positioned precisely at the “flat” edge of the alignment
zone.

horizontal alignment

vertical
alignment

Correct Correct

Incorrect Incorrect

4 curve segments

Incorrect Incorrect

>20 units

not precisely
vertical

x=70

x=110

74 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 8

Figure 8c. Position joining endpoint at flat edge of alignment zone

Flex features must be coordinated with the Private dictionary
BlueShift value. The BlueShift value must be larger than the max-
imum Flex feature height. Since the default value of BlueShift is
7, this entry must be set explicitly if the maximum Flex feature
height is more than 6. For example, if the maximum Flex feature
height is 8, then set BlueShift to 9. If the maximum Flex feature
height is 6 or less, the BlueShift entry may be omitted.

Figure 8d. Set BlueShift value to maximum Flex feature height plus 1

The Flex mechanism chooses whether the two Bézier curves
should be used as defined, or whether a straight line segment
between the two outer endpoints should be used instead. The
method calculates whether the height of the Flex feature in
device space is less than a height control parameter. If so, then
the two curves are replaced by a single straight line segment. If
not, the curve points are adjusted so that the curve features will
be rendered appropriately.

Correct Incorrect

cap-height: 700

alignment zone

cap-height: 700

alignment zone

cap-height
overshoot
position: 715

cap-height
overshoot
position: 715

BlueShift

flex-height: 8

cap-height: 700

value set to 9 BlueShift should be left out

flex-height: 5

cap-height: 700

cap-height
overshoot
position: 715

cap-height
overshoot
position: 715

Chapter 8: Using Subroutines 75

Type 1 Specifications 2/12/90 final chapter 8

To encode two Bézier curve segments for Flex, several changes
must be made in the charstring. The following is an algorithm
that accomplishes these changes.

1. Note the coordinates of the current point in character space
where the first curve begins. Call this the starting point.

2. Compute the relative distance from the starting point to a ref-
erence point. For horizontally oriented curves, the reference
point will have the same x coordinate as the joining point and
the same y coordinate as the starting point. For vertically ori-
ented curves, the reference point will have the same y
coordinate as the joining point and the same x coordinate as
the starting point.

3. Remove the two rrcurveto commands, leaving six coordinate
values (12 numbers).

4. Recompute the coordinates of the first pair to be relative to the
reference point.

5. Insert at the beginning of the sequence the coordinate of the
reference point relative to the starting point. There are now
seven coordinate values (14 numbers) in the sequence.

6. Place a call to Subrs entry 1 at the beginning of this sequence
of coordinates, and place an rmoveto command and a call to
Subrs entry 2 after each of the seven coordinate pairs in the
sequence.

7. Place the Flex height control parameter and the final coordi-
nate expressed in absolute terms (in character space) followed
by a call to Subrs entry 0 at the end.

76 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 8

Figure 8e. Calculating Flex

For example, consider a section of PostScript code that defines
two Bézier curves that meet the requirements for Flex. See Figure
8e. This outline section begins at the point (100, -10) (in absolute
character space; relative to the character space origin) and is to be
included in a font whose baseline is at zero.

100 -10 moveto
115 -10 125 0 150 0 curveto
175 0 185 -10 200 -10 curveto

The Flex height is 10, the control points closest to the center end-
point are at the same y coordinate, and the two endpoints are at
the same y coordinate. Thus, this sequence of two curves begins
at (100, -10), joins at (150, 0) and ends at (200, -10). Furthermore,
the joining coordinate is at the same y coordinate as the baseline.

This outline fragment can be expressed with rrcurveto com-
mands suitable for inclusion in a charstring as follows:

15 0 10 10 25 0 rrcurveto
25 0 10 -10 15 0 rrcurveto

To convert this charstring fragment to the Flex form, remove the
rrcurveto commands and recompute the coordinates of the first
pair to be relative to the reference point (150, -10):

-35 0 10 10 25 0 25 0 10 -10 15 0

(100,-10) (115,-10)

(125,0)

(150,0)

(175,0)

(185,-10) (200,-10)

joining point

starting point

reference point

end point
(150,-10)

Chapter 8: Using Subroutines 77

Type 1 Specifications 2/12/90 final chapter 8

Insert the coordinate of the reference point, relative to the start-
ing point, at the beginning of this sequence and start with a call
to the Subrs entry 1:

1 callsubr 50 0 -35 0 10 10 25 0 25 0 10 -10 15 0

Add the rmoveto commands and calls to Subrs entry 2:

1 callsubr
50 0 rmoveto 2 callsubr
-35 0 rmoveto 2 callsubr
10 10 rmoveto 2 callsubr
25 0 rmoveto 2 callsubr
25 0 rmoveto 2 callsubr
10 -10 rmoveto 2 callsubr
15 0 rmoveto 2 callsubr

Add the final parameters and call to Subrs entry 0. The first
number declares the size (in hundredths of a device unit) of the
rendered Flex height at which the two curves will be expressed as
curves rather than as a straight line. For cupped serifs or other fea-
tures that interact with overshoot zones, 50 (or one-half of a
device pixel) should be used for this control parameter. Thus, if
the Flex height renders to 50 hundredths of a pixel or more, the
curves will be used; if less, a straight line will be used. The second
and third numbers are the final coordinate expressed in absolute
terms in character space (relative to the character space origin).
In this example, they are 200 and -10:

1 callsubr
50 0 rmoveto 2 callsubr
-35 0 rmoveto 2 callsubr
10 10 rmoveto 2 callsubr
25 0 rmoveto 2 callsubr
25 0 rmoveto 2 callsubr
10 -10 rmoveto 2 callsubr
15 0 rmoveto 2 callsubr
50 200 -10 0 callsubr

In this example, the Flex feature height is 10. If this is the maxi-
mum Flex feature height for the entire font, then the value of
BlueShift should be set to 11.

78 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final chapter 8

8.4 First Four Subrs Entries

If Flex or hint replacement is used in a Type 1 font program, the
first four entries in the Subrs array in the Private dictionary must
be assigned charstrings that correspond to the following code
sequences. If neither Flex nor hint replacement is used in the font
program, then this requirement is removed, and the first Subrs
entry may be a normal charstring subroutine sequence. The first
four Subrs entries contain:

Subrs entry number 0:

3 0 callothersubr pop pop setcurrentpoint return

Subrs entry number 1:

0 1 callothersubr return

Subrs entry number 2:

0 2 callothersubr return

Subrs entry number 3:

return

These code sequences must be encoded and encrypted via char-
string encryption in accordance with the rest of the font
program. They must then be included in the program using the
RD–NP format.

The Subrs entries 1 and 2 are merely abbreviations for calling
OtherSubrs entries. This saves two charstring bytes on each call.
Subrs entry 3 does nothing; it is used when Type 1 BuildChar
cannot perform hint replacement. Subrs entry 0 passes the final
three arguments in the Flex mechanism into OtherSubrs entry 0.
That procedure puts the new current point on top of the Post-
Script interpreter operand stack. Subrs entry 0 then transfers
these two coordinate values to the Type 1 BuildChar operand
stack with two pop commands and makes them the current point
coordinates with a setcurrentpoint command.

Type 1 Specifications 2/1/90 proof 1 chapter 9

79

CHAPTER 9

Because Type 1 fonts are PostScript language programs, their con-
tents have sometimes been arranged in more complicated ways
than already described. This chapter describes two special forms
that have been used in Adobe Type 1 font programs: synthetic
and hybrid fonts. Type 1 font parsers must be able to recognize
these forms correctly. This chapter is intended primarily for
people who are parsing an existing Type 1 font program and ren-
dering it.

9.1 Synthetic Fonts

A synthetic font is a font program that is a modification of another
font program by means of a different transformation matrix.
Obliqued, expanded, and condensed fonts are examples of fonts
that may be constructed as synthetic fonts. True italic faces and
high-quality compressed and expanded faces should have com-
pletely new character outlines. However, a synthetic font
program may sometimes work almost as well, at typically large
savings in PostScript interpreter VM usage.

A synthetic font program associates its CharStrings dictionary
entry with the CharStrings dictionary from a font program
already loaded in the PostScript interpreter’s VM. Thus, the addi-
tional storage required for the synthetic font program is only for
its font dictionary; the large CharStrings dictionary is shared
with the “basic” font program. A synthetic font program needs its
own UniqueID number, so it must construct its own Private dic-
tionary. This dictionary must be a clone of the basic font’s Private
dictionary except for the UniqueID entry.

Special Font
Organizations

Type 1 Specifications 2/1/90 proof 1 chapter 9

80 Adobe Type 1 Font Format

Practically, however, there is no guarantee that the basic font pro-
gram for a particular synthetic font will actually be in VM when
the synthetic font is loaded. Thus, a synthetic font must contain
a copy of the basic font program. The algorithm contained in
PostScript language code in the synthetic font program checks for
the existence of the basic font program in the FontDirectory dic-
tionary in the PostScript interpreter. It also checks to see that the
basic font has a FontType equal to one, and if the UniqueID is
known, that it is the same as that of the synthetic font. If these
conditions are met, then the synthetic font proceeds to discard
the basic font it contains (by using readstring on itself), and it
copies the CharStrings dictionary from the pre-existing basic font
program. If the basic font program doesn’t exist, then the syn-
thetic font program executes the basic font it contains and
constructs itself as before. In this second case, two font dictionar-
ies, the basic font and the synthetic font, are created in VM rather
than only the synthetic font being created.

The method for checking whether a basic font dictionary exists
uses the known operator on the FontDirectory dictionary. A syn-
thetic font program must use the token “FontDirectory” after the
first occurrence of the token “/Private”. This first occurrence will
take place where the synthetic font program defines its Private
dictionary, not where the embedded basic font program defines
its Private dictionary.

9.2 Hybrid Fonts

A hybrid font is a font program that contains two sets of outlines.
One set of outlines is chosen according to the resolution of the
device on which the font is being used. Hybrid font programs are
typically used for typeface designs with subtle curves that are
beyond the Flex mechanism’s capabilities. At high resolutions a
set of outlines with full fidelity to the design is used; at low reso-
lutions a set of outlines with straighter edges is used. An example
of a hybrid font program in the Adobe Type Library is Optima*.

In a hybrid font program, the Subrs entries and the CharStrings
entries occur several times. All the Subrs entries for the set of out-
lines intended for low-resolution rendering occur in a group as in
a normal Type 1 font program; these are followed by all the Subrs
entries for high-resolution rendering. These groups are separated
by PostScript language code that checks resolution and that

Type 1 Specifications 2/1/90 proof 1 chapter 9

Chapter 9: Special Font Organizations 81

ignores one of the groups by means of save and restore operators.
The CharStrings entries (which occur last in the font program as
always), are grouped and selected in the same way.

The PostScript language code that checks the resolution of the
output device sets a value in an identifier named hires. If the
token “hires” occurs in a Type 1 font program prior to the first
occurrence of “/Subrs”, it must be a hybrid font program in the
form described above.

Type 1 Specifications 2/1/90 proof 1 chapter 9

82 Adobe Type 1 Font Format

Type 1 Specifications 2/1/90 proof 1 chapter 10

83

CHAPTER 10

There are Type 1 font program interpreters, such as in Adobe
Type Manager software, that do not incorporate a complete
PostScript interpreter. This kind of Type 1 font rendering software
parses the Type 1 font program in a particularly simple fashion.
Type 1 fonts must strictly conform to these parsing rules in addi-
tion to being legal PostScript language programs. The example
font program shown in Chapter 2, “Font Program Organization,”
exhibits the properties that a Type 1 font program must have.

Simplified parsers can separate the input text of a Type 1 font pro-
gram into tokens according to PostScript language rules as
defined in the PostScript Language Reference Manual. (Comments
and binary contents of charstrings are ignored when looking for
tokens.) Simplified parsers can check tokens occurring at “top
level” (not contained within procedure bodies) for certain key-
words, then take specific actions based on those keywords.

• Individual tokens and charstrings may not exceed 65,535 char-
acters in length.

• Most keywords are names that are associated with values in a
dictionary; the initial portion of a Type 1 font program is
assumed to contain names to be inserted in the font
dictionary.

• If the keyword eexec appears, then the text following must be
encrypted. No assignments of values to names may occur in
the plaintext that follows the encrypted portion.

• All font dictionary assignments (except for CharStrings and
Private) must take place before the first occurrence of the key-
word /Private.

Adobe Type Manager
Compatibility

Type 1 Specifications 2/1/90 proof 1 chapter 10

84 Adobe Type 1 Font Format

• All assignments following /Private (except for CharStrings
contents) must be in the Private dictionary.

• If the eexec operator is used, it must occur before the first
occurrence of the token /Private. eexec is not a part of the
PostScript language, but is an additional operator understood
by the PostScript interpreter, whose purpose is to execute
encrypted font code.

10.1 Simple Values

When a simple value (integer, real, string, name, or Boolean) is
associated with a name in a dictionary, that value must follow the
name immediately as the next token.

Boolean values may only be the tokens true or false. Simple
values, such as integers, must be written explicitly following a
name; they may not be computed by a sequence of PostScript
language constants and operators.

For example,

/FontType 1 def

follows the correct pattern, but

1 /FontType exch def

and

/FontType 2 1 sub def

do not conform to Type 1 font parsing rules even though they are
legal and equivalent PostScript language code.

10.2 Arrays

When an array is expected as a value, the array must immediately
follow the name to which it is assigned. An array must begin with
either [or { and terminate with the corresponding] or }. Numeric
contents must occur as single tokens within the array delimiters.

Type 1 Specifications 2/1/90 proof 1 chapter 10

Chapter 10: Adobe Type Manager Compatibility 85

10.3 Keywords

Values for certain keywords must conform to their own rules as
described as follows:

• The tokens following /Encoding may be StandardEncoding
def, in which case the Adobe Standard Encoding will be
assigned to this font program. For special encodings, assign-
ments must be performed as shown in the example in section
2.3, “Explanation of a Typical Font Program,” using the repeti-
tive sequence:

dup index charactername put

where index is an integer corresponding to an entry in the
Encoding vector, and charactername refers to a PostScript lan-
guage name token, such as /Alpha or /A, giving the character
name assigned to a particular character code. The Adobe Type
Manager parser skips to the first dup token after /Encoding to
find the first character encoding assignment. This sequence of
assignments must be followed by an instance of the token def
or readonly; such a token may not occur within the sequence
of assignments.

• The only binary data that may occur in a font program are in
Subrs and CharStrings entries.

• The integer immediately following /Subrs must be exactly the
number of entries in the Subrs array.

• Only Subrs entries may be defined until the Subrs array is com-
pleted. Each subroutine is defined using the sequence:

dup index nbytes RD ~n~binary~bytes~ NP

where RD is the name of the procedure performing the RD
function as defined in section 2.4, “Inside the Encrypted Por-
tion.” This is usually either -| or RD. NP is the name of the
procedure performing the NP function as defined in section
2.4. This is usually either | or NP. There must be exactly one
blank between the RD token and the binary bytes.

Type 1 Specifications 2/1/90 proof 1 chapter 10

86 Adobe Type 1 Font Format

• The integer immediately following /CharStrings must be
greater than or equal to the number of CharStrings entries.
Each charstring entry is defined using the sequence:

charactername nbytes RD ~n~binary~bytes~ ND

where charactername is the name of the character defined by
the charstring. RD is again the name of the procedure perform-
ing the RD function as defined in section 2.4. ND is the name
of the procedure performing the ND function as defined in sec-
tion 2.4. This is usually either |- or ND. There must be exactly
one blank between the RD token and the binary bytes. Only
CharStrings entries may be defined until the CharStrings dic-
tionary is completed.

• The sequence of charstring definitions in the CharStrings dic-
tionary must be followed by an instance of the token end. An
end token may not occur within the sequence of CharStrings
dictionary assignments. No assignments may occur in the
Type 1 font program after the CharStrings dictionary is com-
pleted.

• If the token FontDirectory occurs in the font program after the
first occurrence of the token /Private, then the font program
must be a synthetic font, as described in section 9.1, “Syn-
thetic Fonts.” If the token hires occurs in the font program
after the first occurrence of the token /Private, then the font
must be a hybrid font, as described in section 9.2, “Hybrid
Fonts.”

Type 1 Specifications 2/1/90 proof 1 appendix 1

87

APPENDIX 1

Entry Page Description

BlueFuzz 41 Extends the range of alignment
zones. Optional.

BlueScale 39 Related to point size at which to
deactivate overshoot suppression.
Optional.

BlueShift 40 Overshoot enforcement. If Flex
feature is used, then the maximum
Flex feature height plus 1. Optional,
but relevant even if there is no Flex in
the font program.

BlueValues 36 Font-wide vertical alignment zones.
Required.

ExpansionFactor 45 Provides control over rendering of
counters. Optional.

FamilyBlues 38 Family-wide vertical alignment
zones. Optional.

FamilyOtherBlues 38 Family-wide bottom alignment
zones. Optional.

ForceBold 43 Set to true to force bold appearance at
small sizes. Set to false to inhibit this
behavior. Optional.

LanguageGroup 44 Identifies language group of font.
Optional.

lenIV 45 Number of bytes at beginning of
charstring. Optional.

Private Dictionary
Entries

Type 1 Specifications 2/1/90 proof 1 appendix 1

88 Adobe Type 1 Font Format

Entry Page Description

MinFeature 45 Obsolete. Set to {16 16}. Required.

ND 16 Procedure that abbreviates noaccess
def. Required (may be named |-).

NP 16 Procedure that abbreviates noaccess
put. Required (may be named |).

OtherBlues 38 Additional bottom alignment zones.
Optional.

OtherSubrs 67 Flex, hint replacement, and future
extensions. Required if Flex or hint
replacement are used.

password 45 Compatibility entry. Set to 5839.
Required.

RD 16 Procedure that reads a charstring
from the input stream. Required (may
be named -|).

RndStemUp 44 Compatibility entry. Use only for
font programs in language group 1.
Optional.

StdHW 42 Dominant horizontal stem width.
Optional.

StdVW 42 Dominant vertical stem width.
Optional.

StemSnapH 42 Array of common horizontal stem
widths. Optional.

StemSnapV 43 Array of common vertical stem
widths. Optional.

Subrs 67 Charstring subroutines. Optional.
Required if OtherSubrs are used.

UniqueID 17 Number unique to each Type 1 font
program. Optional, but strongly
recommended.

Type 1 Specifications 2/12/90 final appendix 2

89

APPENDIX 2

Value Command Value Command

1 hstem 12 0 dotsection

3 vstem 12 1 vstem3

4 vmoveto 12 2 hstem3

5 rlineto 12 6 seac

6 hlineto 12 7 sbw

7 vlineto 12 12 div

8 rrcurveto 12 16 callothersubr

9 closepath 12 17 pop

10 callsubr 12 33 setcurrentpoint

11 return

12 escape

13 hsbw

14 endchar

21 rmoveto

22 hmoveto

30 vhcurveto

31 hvcurveto

Charstring Command
Values

Type 1 Specifications 2/1/90 proof 1 appendix 2

90 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final appendix 3

91

APPENDIX 3

The following PostScript language code creates four procedures
that make up the first four entries in the OtherSubrs array in the
Private dictionary. The first three procedures pertain to Flex and
the fourth is used for hint replacement. The code is copyrighted
by Adobe Systems Incorporated, and may not be reproduced
except by permission of Adobe Systems Incorporated. Adobe Sys-
tems Incorporated grants permission to use this code in Type 1
font programs, as long as the code is used as it appears in this doc-
ument, the copyright notice remains intact, and the character
outline code included in such a font program is neither copied
nor derived from character outline code in any Adobe Systems
font program.

The PostScript language program defining the Flex procedure has
been modified since Version 1.0 (March 1990) of this document.
Include this code in a font program if you want to use both the
Flex and hint replacement features. Another code segment for
fonts that require hint replacement only is broken out at the end
of this appendix.

The two programs that follow are available on diskette for the
convenience of Type 1 font program developers. To order the dis-
kette, please use the order form at the back of this document.

The following code should be executed within the Private dictio-
nary:

% Copyright (c) 1987-1990 Adobe Systems Incorporated.
% All Rights Reserved.
% This code to be used for Flex and hint replacement.
% Version 1.1
/OtherSubrs
[systemdict /internaldict known
{1183615869 systemdict /internaldict get exec
/FlxProc known {save true} {false} ifelse}

OtherSubrs Programs

92 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final appendix 3

{userdict /internaldict known not {
userdict /internaldict
{count 0 eq
{/internaldict errordict /invalidaccess get exec} if
dup type /integertype ne
{/internaldict errordict /invalidaccess get exec} if
dup 1183615869 eq
{pop 0}
{/internaldict errordict /invalidaccess get exec}
ifelse
}
dup 14 get 1 25 dict put
bind executeonly put
} if
1183615869 userdict /internaldict get exec
/FlxProc known {save true} {false} ifelse}
ifelse
[
systemdict /internaldict known not
{ 100 dict /begin cvx /mtx matrix /def cvx } if
systemdict /currentpacking known {currentpacking true setpacking} if
{
systemdict /internaldict known {
1183615869 systemdict /internaldict get exec
dup /$FlxDict known not {
dup dup length exch maxlength eq
{ pop userdict dup /$FlxDict known not
{ 100 dict begin /mtx matrix def
dup /$FlxDict currentdict put end } if }
{ 100 dict begin /mtx matrix def
dup /$FlxDict currentdict put end }
ifelse
} if
/$FlxDict get begin
} if
grestore
/exdef {exch def} def
/dmin exch abs 100 div def
/epX exdef /epY exdef
/c4y2 exdef /c4x2 exdef /c4y1 exdef /c4x1 exdef /c4y0 exdef /c4x0 exdef
/c3y2 exdef /c3x2 exdef /c3y1 exdef /c3x1 exdef /c3y0 exdef /c3x0 exdef
/c1y2 exdef /c1x2 exdef /c2x2 c4x2 def /c2y2 c4y2 def
/yflag c1y2 c3y2 sub abs c1x2 c3x2 sub abs gt def
/PickCoords {
{c1x0 c1y0 c1x1 c1y1 c1x2 c1y2 c2x0 c2y0 c2x1 c2y1 c2x2 c2y2 }
{c3x0 c3y0 c3x1 c3y1 c3x2 c3y2 c4x0 c4y0 c4x1 c4y1 c4x2 c4y2 }
ifelse
/y5 exdef /x5 exdef /y4 exdef /x4 exdef /y3 exdef /x3 exdef
/y2 exdef /x2 exdef /y1 exdef /x1 exdef /y0 exdef /x0 exdef
} def

Appendix 3: OtherSubrs Programs 93

Type 1 Specifications 2/12/90 final appendix 3

mtx currentmatrix pop
mtx 0 get abs .00001 lt mtx 3 get abs .00001 lt or
{/flipXY -1 def }
{mtx 1 get abs .00001 lt mtx 2 get abs .00001 lt or
{/flipXY 1 def }
{/flipXY 0 def }
ifelse }
ifelse
/erosion 1 def
systemdict /internaldict known {
1183615869 systemdict /internaldict get exec dup
/erosion known
{/erosion get /erosion exch def}
{pop}
ifelse
} if
yflag
{flipXY 0 eq c3y2 c4y2 eq or
{false PickCoords }
{/shrink c3y2 c4y2 eq
{0}{c1y2 c4y2 sub c3y2 c4y2 sub div abs} ifelse def
/yshrink {c4y2 sub shrink mul c4y2 add} def
/c1y0 c3y0 yshrink def /c1y1 c3y1 yshrink def
/c2y0 c4y0 yshrink def /c2y1 c4y1 yshrink def
/c1x0 c3x0 def /c1x1 c3x1 def /c2x0 c4x0 def /c2x1 c4x1 def
/dY 0 c3y2 c1y2 sub round
dtransform flipXY 1 eq {exch} if pop abs def
dY dmin lt PickCoords
y2 c1y2 sub abs 0.001 gt {
c1x2 c1y2 transform flipXY 1 eq {exch} if
/cx exch def /cy exch def
/dY 0 y2 c1y2 sub round dtransform flipXY 1 eq {exch}
if pop def
dY round dup 0 ne
{/dY exdef }
{pop dY 0 lt {-1}{1} ifelse /dY exdef }
ifelse
/erode PaintType 2 ne erosion 0.5 ge and def
erode {/cy cy 0.5 sub def} if
/ey cy dY add def
/ey ey ceiling ey sub ey floor add def
erode {/ey ey 0.5 add def} if
ey cx flipXY 1 eq {exch} if itransform exch pop
y2 sub /eShift exch def
/y1 y1 eShift add def /y2 y2 eShift add def /y3 y3
eShift add def
} if
} ifelse
}
{flipXY 0 eq c3x2 c4x2 eq or

94 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final appendix 3

{false PickCoords }
{/shrink c3x2 c4x2 eq
{0}{c1x2 c4x2 sub c3x2 c4x2 sub div abs} ifelse def
/xshrink {c4x2 sub shrink mul c4x2 add} def
/c1x0 c3x0 xshrink def /c1x1 c3x1 xshrink def
/c2x0 c4x0 xshrink def /c2x1 c4x1 xshrink def
/c1y0 c3y0 def /c1y1 c3y1 def /c2y0 c4y0 def /c2y1 c4y1 def
/dX c3x2 c1x2 sub round 0 dtransform
flipXY -1 eq {exch} if pop abs def
dX dmin lt PickCoords
x2 c1x2 sub abs 0.001 gt {
c1x2 c1y2 transform flipXY -1 eq {exch} if
/cy exch def /cx exch def
/dX x2 c1x2 sub round 0 dtransform flipXY -1 eq {exch} if pop def
dX round dup 0 ne
{/dX exdef }
{pop dX 0 lt {-1}{1} ifelse /dX exdef }
ifelse
/erode PaintType 2 ne erosion .5 ge and def
erode {/cx cx .5 sub def} if
/ex cx dX add def
/ex ex ceiling ex sub ex floor add def
erode {/ex ex .5 add def} if
ex cy flipXY -1 eq {exch} if itransform pop
x2 sub /eShift exch def
/x1 x1 eShift add def /x2 x2 eShift add def /x3 x3 eShift add def
} if
} ifelse
} ifelse
x2 x5 eq y2 y5 eq or
{ x5 y5 lineto }
{ x0 y0 x1 y1 x2 y2 curveto
x3 y3 x4 y4 x5 y5 curveto }
ifelse
epY epX
}
systemdict /currentpacking known {exch setpacking} if
/exec cvx /end cvx] cvx
executeonly
exch
{pop true exch restore}
{
systemdict /internaldict known not
{1183615869 userdict /internaldict get exec
exch /FlxProc exch put true}
{1183615869 systemdict /internaldict get exec
dup length exch maxlength eq
{false}
{1183615869 systemdict /internaldict get exec
exch /FlxProc exch put true}

Appendix 3: OtherSubrs Programs 95

Type 1 Specifications 2/12/90 final appendix 3

ifelse}
ifelse}
ifelse
{systemdict /internaldict known
{{1183615869 systemdict /internaldict get exec /FlxProc get exec}}
{{1183615869 userdict /internaldict get exec /FlxProc get exec}}
ifelse executeonly
} if
{gsave currentpoint newpath moveto} executeonly
{currentpoint grestore gsave currentpoint newpath moveto} executeonly
{systemdict /internaldict known not
{pop 3}
{1183615869 systemdict /internaldict get exec
dup /startlock known
{/startlock get exec}
{dup /strtlck known
{/strtlck get exec}
{pop 3}
ifelse}
ifelse}
ifelse
} executeonly
] noaccess def

For hint replacement only, use this code:

% Copyright (c) 1987 Adobe Systems Incorporated.
% All rights reserved.
% This code to be used for hint replacement only.
/OtherSubrs
[{} {} {}
{systemdict /internaldict known not
{pop 3}
{1183615869 systemdict /internaldict get exec
dup /startlock known
{/startlock get exec}
{dup /strtlck known
{/strtlck get exec}
{pop 3}
ifelse}
ifelse}
ifelse
} executeonly
] noaccess def

96 Adobe Type 1 Font Format

Type 1 Specifications 2/12/90 final appendix 3

The first listing of PostScript language code creates an array of
four elements, each of which is a procedure, and it associates this
array with OtherSubrs. Some of this code is executed when the
font program is read. At that time, a somewhat complicated selec-
tion of the correct procedure to place in slot 0 is made. This
selection is based on features that may or may not be present in
various versions of the PostScript interpreter.

If the Flex mechanism is not used in the font program, entries 0,
1, and 2 may be replaced by null procedures ({ }). If hint replace-
ment is not used in the font program, entry 3 may be eliminated.
If neither Flex nor hint replacement is used, the OtherSubrs array
may be eliminated entirely.

The preceding code uses a special dictionary, internaldict for sev-
eral operators and values. This dictionary has limited capacity
and the PostScript interpreter depends on its integrity for correct
operation. Do not use this dictionary for any purpose other than
as part of the preceding code. Furthermore, if you write your own
code for these functions, do not use the name FlxProc; this may
interfere with other font programs that incorporate the preced-
ing code.

Type 1 Specifications 6/14/90 final appendix 4

97

APPENDIX 4

This document describes Version 1.1 of the Adobe Type 1 Font
Format. Changes to the Adobe Type 1 Font Format from Version 1.0
published March 1990, are noted in the paragraphs below.

Clearly documented default values for the BlueScale (.039625),
BlueShift (7), BlueFuzz (1), and ExpansionFactor (.06) entries in
the Private dictionary. See pages 40-41, and 45.

A new entry to the Private dictionary, ExpansionFactor, provides
a font level hint that is useful for intelligent rendering of charac-
ter glyphs such as bar codes and logos that have a lot of counters.
See page 45.

Added warning to the description of the closepath command
about using closepath to form a subpath section intended to be
zero length. See page 51.

The Adobe Type Manager parser skips to the first dup token after
/Encoding to find the first character encoding assignment. See
page 85.

The PostScript language program defining the Flex procedure in
Appendix 3 has been modified to protect against trying to put the
$FlxDict into internaldict if internaldict is full. The old code could
lead to dictfull errors out of show in certain unlikely circum-
stances. The new code simply puts the $FlxDict in userdict if
internaldict is full. See pages 91-95.

Changes

98

Type 1 Specifications 6/14/90 final appendix 4

Type 1 Specifications 2/1/90 proof 1 index

99

%!FontType1 12
%!PS-AdobeFont 12
%!VMusage

calculating values for 12
%%VMusage 12
-| 16
| 16
|- 16, 86

A
absolute coordinate values 26
accented characters 50
Adobe StandardEncoding vector 50
Adobe Type Library 68, 80
Adobe Type Manager

compatibility with 83
AFM files 18
algorithms

decryption 62
encoding Flex 75
encryption 62

alignment control 36, 57
alignment zones 23, 36, 37, 41

dominant 38
for a font family 38
Roman characters 25

Apple Macintosh
special file format 4

ascender-height 25, 37
ascender-height overshoot position

37

B
baseline 23, 36
baseline overshoot position 24, 36
Bézier curves

Flex 75

BlueFuzz 37, 38, 41
BlueScale 37, 39

restriction on 40
BlueShift 39, 40, 74, 77

setting for Flex 74
BlueValues 16, 36, 37, 57

number of pairs 37
bold characters

on display devices 43
bottom-zones 24, 36
bounding box

FontBBox 13
BuildChar 7, 26, 38, 56

detecting errors 8
differences between Type 1 and

Type 3 7
error checking 8
how it works 8
Type 3 7
when it interprets a charstring

16
buildchar 23

C
caching 13

and UniqueID number 17
callothersubr 55, 68
callsubr 55, 68, 70
cap-height 24, 37
cap-height overshoot position 24, 37
changing hints 69
character

accented 50
coordinate values 26
geography 21
left sidebearing 22
left sidebearing point 22

Index

Type 1 Specifications 2/1/90 proof 1 index

100 Adobe Type 1 Font Format

measurements 22
origin 22
scaling 25
scaling matrix 25
terminology 21
width 22

character level hints 56–57
character outline

and flattened paths 27
as PostScript path 26
encoded in Subrs array 67

character paths
and limitcheck 27
conciseness of 31
direction of 27
limitations of 26
overlapping of 28
tangent continuity 30

character space 25
coordinate system 25
range of coordinate values 26

charstring 47
command list 49
command value table 89
description 47
encoding 47
encoding example 58
encryption 64

charstring command encoding 48
charstring number encoding 48
CharStrings dictionary 47

diagram of 10
encoding 14
encrypting 14

Chinese characters 44
clipping

accented characters 13
closefile 17
closepath 26, 51, 71
compatibility

with ATM 83
with older interpreters 4, 45

coordinate values
range of 26

copyrights 5
advantages of 5

cupped serifs 72
current point 56

and closepath command 51
Cyrillic 44

D
declarative hints 35, 56
decription

algorithm for 63
decrypting

eexec-encrypted text 15
definefont 19
descender-depth 38
descender-depth overshoot position

38
developer support 4
device space 25
direction of paths 27
discarding stem hints 69
div 26, 49, 54
dotsection 52, 71

E
eexec 83

decrypting 15
encryption 63
operation of 14

encoding
charstring 47
charstring commands 48
charstring numbers 48
command values 89
example of 58

Encoding array 13
changing 8

encryption 61
algorithms 62
charstring 64
eexec 61, 63
method 61

end 86
endchar 50, 51, 58
escape 49, 89
ExpansionFactor 45

F
FamilyBlues 38
FamilyOtherBlues 38
FID 17, 19
figure-height 37
figure-height overshoot position 37
fill 8, 50
filling a character 27
findfont 19
flat position 23

Type 1 Specifications 2/1/90 proof 1 index

Index 101

flattened path limit 27
Flex 72

algorithm for 75
example 76
setting BlueShift 74

FlxProc 96
font cache 17
font dictionary 7, 9, 13

diagram of 10
required entries 9

font level hints 36
font name

registration of 19
font program

encrypted portion 14–17
hybrid 80
naming 19
organization 7
sample code 11
special organization 79
synthetic 79

FontBBox 13, 51
accuracy 13

FontDirectory 19, 80, 86
FontInfo dictionary 13, 17

diagram of 10
FontMatrix 13, 25, 26
FontName 13, 17, 19
FontType 13, 18
ForceBold 43

G
“ghost” stems 57
Greek characters 44

H
height coordination 38
hint commands 52
hint replacement 53, 54, 56, 67, 68,

71
hints 3, 14, 21, 35

changing 69
character level 56–57
declarative 35
Flex 72
font level 36
for dot sections 52, 71
overlapping 56
stem 56, 69
uses of 35
where they appear 35

hires 81, 86
hlineto 52, 58
hmoveto 52
horizontal stem zones 53
horizontal stems 21, 56
hsbw 50, 51, 58
hstem 53, 56
hstem3 53
hvcurveto 52
hybrid fonts 80

I
IBM PC

special file format 4
ideographs 44
image 26
imagemask 27
internaldict 96
invalidfont 8
italic

and StemSnapV 42

J
Japanese characters 44

K
Kanji characters 27, 44
Kanji printers 27
Korean characters 44

L
LanguageGroup 44
LaserWriter 45
Latin characters 44
left sidebearing 22
left sidebearing point 22, 51, 53, 54,

58
lenIV 45
limitcheck 27

M
matrix, scaling 25
MinFeature 16, 45

N
naming a font program 19
ND 16, 86
noaccess attribute 16
NP 16, 85

Type 1 Specifications 2/1/90 proof 1 index

102 Adobe Type 1 Font Format

O
operand stack

Type 1BuildChar 47
Optima 80
ordinal baseline 25, 38
ordinal baseline overshoot position

38
origin 22
OtherBlues 36, 38, 57

number of pairs 38
OtherSubrs 55, 67, 72, 91

and Flex 68
and hint replacement 69
program listing 91

overlap
of character path 28
of stem hints 56, 69

overshoot position 23
overshoot suppression 36, 39, 40
overshoots 23

P, Q
PaintType 8, 13, 28, 51

support for 50
password 16, 45
path construction commands 51–54
paths 27

see also character paths
points

at extremes 29
tangent continuity 30

pop 55, 69, 78
PostScript Language Reference Manual

3, 49, 83
Private dictionary 35, 87

R
RD 16

use of 16
return 55, 67
rlineto 26, 52, 58
rmoveto 50, 52, 58, 71, 77
RndStemUp 44
roman characters 44
rrcurveto 52, 72, 75, 76

S
sbw 50, 51
scalefont 25
scaling matrix 25

exceptions 26
seac 50, 51
serifs 21

cupped 72
setcachedevice 50
setcurrentpoint 56, 78
standard encoding accented charac-

ter 50
StdHW 42
StdVW 42
stem

definition of 21
ghost 57
hints for 56
width information 42

stem hints 56, 69
discarding 69
how they work 69

stem width 42
in italic characters 42

StemSnapH 42
StemSnapV 43
stroke 8, 50
subroutines

OtherSubrs 68
Subrs 78
uses for 67

Subrs 51, 55, 67, 68, 70, 75, 77, 80, 85
first four entries 78

superior baseline 25, 38
superior baseline overshoot position

38
Symbol font program 10
synthetic fonts 79

T
top-zones 24, 37, 57
transformations

and scaling matrix 26
Type 1 BuildChar 7, 23, 55

error checking 8
how it works 8
operand stack 47

Type 1 Specifications 2/1/90 proof 1 index

Index 103

Type 1 font format 2
definition 2
future extensions 4
version 12

Type 1 font program
as program 5
comments 12
conceptual overview 9
copyrights 5
dictionary structure 9
naming 19
obtaining a UniqueID 18
sample code 10
UniqueID 18

Type 3 font format 7

U
UniqueID 13, 16, 17, 79

coordinator 18
obtaining 17
"open" range 17
range 17
uses for 17

user space 25
user-defined font format 2
userdict 16

V
version, font format 12
vertical stem zone 54
vertical stems 21, 42, 56
vhcurveto 52
vlineto 52, 58
VM 79
VM usage 79

determining 12
purpose 12

vmoveto 52
vstem 54, 56, 58
vstem3 54

W
white space characters 14
width, character 22
winding rules 28

X, Y, Z
x-height 24, 37
x-height overshoot position 24, 37

Type 1 Specifications 6/21/90 final coloph.diskette.doc

This book was produced using FrameMaker 2.0 and other appli-
cation software packages that support the PostScript language
and Type 1 font programs. Camera-ready film masters were pro-
duced on a high-resolution PostScript imagesetter.

The type used is entirely from the ITC Stone® family, designed at
Adobe Systems. Chapter headings are set in ITC Stone Sans Semi-
bold 24 point and the body text is set in 10 on 12 point ITC Stone
Serif, ITC Stone Serif Italic and ITC Stone Sans Semibold.

Authors—Doug Brotz, Bill Paxton, Jeff Walden

Editing—Jeff Walden, Judith Walthers von Alten

Index—Minette Norman, Sue Crisman, Laura Dower

Illustrations—Keala Hagman, Kim Isola, Rob Babcock

Cover Design—Nancy Winters, Donna Helliwell

Book Design—Nancy Winters, Eve Lynes

Book Production—Andrea Bruno, Eve Lynes, Robin Edwards,
Laura Dower, Lisa Kelly.

Technical Assistance—Dick Sweet, Andy Shore

Reviewers—Rob Babcock, Doug Brotz, Bill Paxton, Kathe Morris,
Terry O’Donnell, Linda Weinert, Linda Gass, Mike Byron, Peter
Hibbard, Dan Mills, David Lemon, Ed Taft, Matt Foley

Publication Management—Eve Lynes, Joan Delfino

Product Management—Rob Babcock

Colophon

Type 1 Specifications 6/21/90 proof 1 coloph.diskette.doc

Diskette Order Form

If you send this coupon (or a copy of it) to Adobe Systems, we will
send you a diskette containing the PostScript language programs
listed in Appendix 3 that pertain to Flex and hint replacement.

TYPE 1 DISKETTE OFFER - VERSION 1.1

Please send me a copy of the program diskette. I have enclosed
$10.00 to cover the costs of materials, handling, and postage.
Thank you.

❏ 3-1/2" Macintosh format ❏ 5-1/4" PC format

Name __

Title ___

Organization __

Street___

City ________________________ State ______ Zip____________

Phone ______________________

Mail to: Type 1 Diskette Offer
Adobe Systems Incorporated
P.O. Box 7900
Mountain View, CA 94039-7900

	Title Page
	Copyright

	Contents
	Introduction
	What Is a Type 1 Font Program?
	What This Document Does
	Versions and Compatibility
	Copyrights for Type 1 Font Programs

	Font Program Organization

	Building Characters

	Font Dictionary

	Explanation of a Typical Font Program
	Inside the Encrypted Portion
	Unique Identification Numbers and Font Names

	Character Outline Considerations

	Character Geography

	Alignments and Overshoots

	Character Coordinate Space

	Character Paths

	Direction of Paths

	Overlapping Paths

	Technical Design Considerations
	Points at Extremes

	Tangent Continuity

	Conciseness

	Consistency

	Private Dictionary

	Declarative Hints
	Font Level Hints
	BlueValues
	OtherBlues
	FamilyBlues and FamilyOtherBlues
	BlueScale
	BlueShift
	BlueFuzz
	Stem Width Information
	ForceBold
	LanguageGroup
	lenIV
	Compatibility Entries
	ExpansionFactor

	CharStrings Dictionary
	Charstring Encoding
	Charstring Number Encoding
	Charstring Command Encoding
	Charstring Command List
	Character Level Hints
	Encoding Example

	Encryption
	Encryption Method
	eexec Encryption
	Charstring Encryption

	Using Subroutines

	Changing Hints Within a Character
	Dot Sections
	Flex
	First Four Subrs Entries

	Special Font Organizations

	Synthetic Fonts
	Hybrid Fonts

	Adobe Type Manager Compatibility

	Simple Values
	Arrays
	Keywords

	Private Dictionary Entries

	Charstring Command Values

	OtherSubrs Programs

	Changes

	Index

	Colophon

	Diskette Order Form

