
1

Enabling Typography :
towards a general model of OpenType Layout

John Hudson, Tiro Typeworks Ltd., 15 April 2014, revision 1.2 (change log )

This discussion paper on OpenType Layout follows from my earlier document Problems
for Indic typography in current OpenType Layout implementations.  This paper seeks
to expand the observations and recommendations in that document towards a general
model for enabling typography for any script and language (presuming an existing Uni-
code character encoding). This paper is intended to be of use primarily for shaping engine
and application makers.

Background
When the OpenType font format and Layout model were introduced by Microsoft and Adobe in the
second half of the 1990s, there was a perceptible difference in the priorities of the two companies:
respectively, complex script shaping and typographic design support. This found expression in the
initial set of OpenType Layout (OTL) features registered by each company, and in the priorities
adopted in the implementation of OTL in each’s software. So, for example, Microsoft registered fea-
tures and implemented support for Arabic and Indic script shaping, but was slow to implement
support for typographic features for European scripts, such as ligatures and smallcaps, while Adobe
registered and supported features for many typographic refinements for European and East Asian
scripts, but was slow to enable complex script shaping or even some kinds of OTL lookup types.

Within their respective areas of priority, each company established de facto standards for feature
implementation via their software, in the absence of any formal specification of OTL behaviour
beyond the font format documentation and supplementary, script-specific shaping specifications
produced by Microsoft. Unfortunately, these implementations tended to perpetuate the initial dif-
ference in priorities between script shaping and typography, such that very different levels of typo-
graphic sophistication now pertain to different writing systems, affecting the ability of publishers,
typographic designers, and font makers to produce consistent quality in their work across multiple
scripts and languages.

In this paper—which is intended to provoke discussion and action, not to provide a fully realised
solution to all issues—, I will attempt to suggest a path towards better integration of script and
language shaping with full typographic sophistication, via a general model of OpenType Layout.
Such a model is complicated in some aspects by the existing feature set, which has been registered
and supported in an ad hoc manner without a unified guiding principle such as this general model
seeks, belatedly, to apply. It is easy to conceive of entirely fresh sets of features and layout behav-
iours based on a strict set of architectural principles—e.g. by making a systematic distinction be-
tween required, default and discretionary settings for any feature—but that is not what this paper
seeks to do. For better or for worse, we have an existing set of features, significant investment in

http://www.tiro.com/John/Problems_for_Indic_Typography.pdf

2

their implementation, and existing documents in need of ongoing support. It is from this position
that I begin.

What is typography, and how do we get to it?
In its broadest sense, I understand typography to be the articulation of text through the design and
arrangement of type. This means that typography is concerned with all aspects of text, from the
shape of individual characters and their immediate interaction within words, up to the design of
whole documents, publication series, or dynamic text presentation systems. In this paper, I am pri-
marily concerned with what is sometimes referred to as microtypography.1 At this level, typography
is concerned primarily with the relationships of visually adjacent typeforms; note, however, that
due to required reordering, the presence of combining marks, or the nature of the shapes involved,
these may not be sequentially adjacent in either the encoded character string or the glyph run). It
is this level of typography that is—or should be—directly addressable via OpenType Layout, either
automatically in the case of required or default features, or as directed by the typographer.

The results of typography are integrated: all the parts contributing together to the reader’s expe-
rience of the text. The process of typography, though, is dis-integrated. Not only does the process of
displaying text involve multiple, more-or-less distinct stages, but in today’s digital typography these
stages are handled by several different technologies, with collective responsibility for the results
shared by operating systems, layout engines, applications and fonts.2 Optimally, these technologies
work together and support each other; when this fails, though, they may actively work against each
other, leading to attempts to work around limitations or bugs in one part of the system elsewhere.
This, predictably, results in incompatibilities, requiring yet further workarounds.

OpenType Layout, it has to be said, is not a tidy technology. It requires that three separate pieces
of software, often made by three separate entities, work seamlessly together, and that they do so
without any formal specification beyond that of the font format. There has never been documen-
tation that tells a shaping engine or application developer how to implement OTL or how, through
that implementation, to enable typography. Instead, there is a mix of script-specific shaping doc-
umentation for some complex writing systems, and the de facto behaviour norms established by
particular shaping engine implementations and fonts, reverse-engineered by other parties with an
eye on compatible outcomes rather than identical procedures. One result of this is that problems
in particular layout engines or fonts will proliferate without correction to others, especially if they
are seen as de facto standards. Another result is that software developers responsible for supporting
specific writing systems, referring to the particular and partial script shaping documentation, will

1.	 I sometimes use the term subatomic typography, in the context of an analogy in which words are understood to be
the atoms of text: the basic distinguishable unit of semantic content. Phrases and sentences constitute various kinds
of simple and complex molecules, making up the compounds of paragraphs, chapters, and the organisms of whole
documents. Subatomic typography, then, is that which concerns itself with what happens within the word, at the
level of the interaction of typeforms. In OTL terms, this is the arena of glyph processing.

2.	All technologies for typesetting text have involved some ‘division of labour’. Handset metal type, of the kind intro-
duced in Europe in the mid-15th Century, located most of the responsibility in the hands of the typesetter, and most
of the intelligence of the system in his brain. Even in that earliest typographic technology, though, default spacing
intelligence was located in the font, embodied in the widths of the metal sorts and, hence, the responsibility of the
type founder rather than the typesetter.

3

tend to ignore those aspects of OTL beyond that documentation, overlooking the fact that script
and language shaping is not an end in itself: it is preparation for typography.

As discussed in my earlier document, the present state of OTL for Indic writing systems presents
an unfortunate example of both these results. Focus on the orthographic cluster as the necessary
unit of script and language shaping has resulted in failure to enable interaction between the clus-
ters: interaction that is necessary to crucial aspects of micro-typography including substitution of
appropriate contextual forms and spacing adjustments to avoid gaps or collisions between adjacent
shapes. Failure of Microsoft’s Uniscribe layout engine to apply cross-cluster lookups has resulted in
other shaping engine makers including the same limitation in their own software, or has put them
under pressure to make their software compatible with the outcomes of Uniscribe, even if their
own outcomes are typographically preferable.

In order to enable typography to a consistent level for all scripts and languages, a number of
things are desirable. Perhaps most challenging, a typographic mentality needs to be inculcated in
all areas of software development affecting the display of text, such that program managers, de-
velopers and testers recognise that the purpose of OpenType Layout is typography. The existing
implementations of OTL, especially at the script-specific layout engine level, need to be reviewed
and behaviour that limits or prevents typography needs to be identified and fixed, even if this means
changes to behaviour that might affect backwards compatibility.3 And a more systematic and better
documented approach to future OTL implementation needs to be adopted, especially for newly
supported scripts and languages so that problems that have afflicted development so far are not
repeated.

I believe all of these initiatives, and others, would benefit from greater collaboration between
interested parties, including through standards organisations and open sourcing. There was a peri-
od, during the early years of OpenType, and during development of core support for major writing
systems and languages in operating systems and applications, when it made sense for companies to
treat text processing and display as an area of competition. I believe that time has past. The focus
of new text processing is increasingly on minority and historical scripts and languages, for which
competitive business cases will be harder and harder to make. The inconsistencies and incompat-
ibilities in levels of support and behaviours that have resulted from two decades of competition in
this area are sources of frustration to users and, it must be said, to font developers.

Outline of a general model
The specification of a general model for OpenType Layout, applicable to all writing systems, would
have been made easier by consistent categorisation of each registered feature with regard to its rôle
in orthographic shaping and typographic layout (and hence what limitations might apply to the
feature with regard to orthographic units of a given writing system). Instead, some features apply
to orthographic unit shaping for some writing systems and to typographic layout for others. This

3.	 Backwards compatibility issues can be handled in a variety of ways, and should be examined in terms of policies for
managing backwards support, not as restrictions on forward development. In the contect of OTL we have already
encountered such issues, arising from changes in Indic script shaping models between Windows XP and Windows
Vista, and these were managed through the introduction of new script tags in the OpenType registry. At worst, ter-
tiary script tags might be required in some instances to resolve current problems in shaping models. Some backwards
compatibility issues might simply be accepted, especially insofar as they result from obvious improvements.

4

is notably the case for what I call the topographical features—<isol> <init> etc.—, which not only
have varying rôles for different writing systems but also apply to varying elements of the text; these
features are discussed at length later in this paper.

This being the case, some special exceptions to a general categorisation of existing features is
unavoidable. With which caveat in mind, I propose the following as a general model for applying
features to text:
1.	 Default glyph pre-processing. This stage directly modifies the outcome of character-to-glyph map-

ping from the font ‘cmap’ table. This may involve language-specific preferred glyph substitutions
triggered by the OT language system tag4 and implemented in the <locl> or character set specific
layout feature. It may involve composition or decomposition of ‘cmap’ default glyph representa-
tions into more convenient glyphs for subsequent processing, using the <ccmp> layout feature.5
Note that while <locl> substitutions are unlikely to be contextual, it should not be presumed that
they will never be, and <ccmp> substitutions are very likely to be contextual if they, for instance,
perform decompositions of precomposed diacritic glyphs only in the context of following com-
bining marks. I believe this stage is probably the most logical place to also handle mirrored form
substitutions.

2.	 Orthographic unit shaping. This applies particularly to complex scripts requiring interaction be-
tween character string analysis and specific glyph substitution features. In some cases this inter-
action may be iterative, involving reordering of output from features within the glyph run, and
then application of additional features. This is the core work of script shaping, in preparation
for the application of typographic features. This stage broadly corresponds to what Microsoft’s
script specifications refer to variously as ‘Basic shaping forms’ and ‘Language based forms’, but
with the difference that it seeks to limit the features involved to those that must be applied to
analysed units of writing systems and never involve interaction between those units. The unit in
question will vary depending on the writing system: e.g. orthographic syllables or ‘clusters’ for
Brahmi-derived scripts, or letter groups defined by character joining behaviours for scripts such
as Arabic. This kind of shaping is, obviously, most important when application of individual
features results in outcomes that require glyph re-ordering by the shaping engine within the
orthographic unit, when clearly defining the beginning and end of the unit is essential to cor-
rect outcomes. Individual features in this stage must be applied sequentially and typically in a
specific order. Note that although lookups for these features should not include inter-unit con-
textual triggers, and any such should be ignored, intra-unit context strings may occur and should
be respected (examples of the latter would be varying <pref> and <blwf> shaping of Telugu -ra
depending on preceding letter(s), or disabling some Malayalam ligatures in the <akhn> feature

4.	 The relationship of OT language system tags to document and text language tagging is a matter for applications to
manage, but obviously it is essential to getting correct results from even this initial stage of OTL. Because the type-
form preference captured by OT language system is a conventional cultural preference rather than linguistically de-
termined per se, it should ideally be possible to independently specify or override automated relationships. The W3C
CSS font spec is admirable in this regard.

5.	At present, Microsoft’s script specifications do not include <ccmp> for Indian writing systems. Instead, some aspects
of glyph pre-processing composition are applied using the <nukt> and <akhn> feature. I’m not aware of a good rea-
son why the Indic shaping model should differ from that of other scripts in this regard.

5

depending on position within longer conjunct sequences).
	 After orthographic unit shaping is completed, all restrictions particular to the length of the unit

should be relaxed and no longer applied to subsequent features.
3.	 Typographic presentation. For ease of discussion, I am separating this stage into two parts, but it

is important to note that features applied in this stage should be considered to apply simultane-
ously; that is, the order of substitutions, their outcomes and interactions should be governed by
the order of associated lookups in the font. This order may involve standard and discretionary
feature lookups being staggered, such that the outcomes of some standard features may be af-
fected by the application of discretionary features.

	 a) Standard typographic presentation. For some writing systems, this includes what Microsoft’s
Indic specifications call ‘Mandatory presentation forms’, but it also inherits substitution features
that some of Microsoft’s specifications classify with ‘Basic shaping forms’, but which do not fit in
the proposed orthographic unit shaping stage because they may involve inter-unit interaction.
The purpose of this stage is to arrive at a typical standard of text presentation according to the
typographic norms of the writing system, the nature of the individual typeface design, and the
capability of the individual font. This means that this stage involves both required layout fea-
tures that must always be applied, such as <rlig>, and default or standard features that should
be applied but that the user may opt to turn off, such as <liga>. It should be obvious by now, I
hope, that no restriction should be placed on the extent of interactions between glyphs in these
features.6

	 b) Discretionary typographic presentation. All these features are presumed to be inactive by de-
fault, and need to be turned on by the user for selected text (this might be through an applica-
tion UI, or via feature tagging of text as in the case of CSS).

4.	 Positioning. Although not formally required, it typically makes sense for positioning feature
lookups to be ordered in a font according to lookup type, which can also be arrived at by thinking
of a progression from positioning of connecting base forms, to non-connecting, to marks rela-
tive to base forms, to marks relative to marks. Presuming the font maker has succeeded in getting
the ‘GPOS’ table to compile without overruns—not always the easiest thing—, software should
apply the lookups as ordered in the font. Since many aspects of positioning are concerned with
resolving relationships of visual adjacency, it is particularly important that restrictions not be
placed on inter-unit interaction or context length during this stage. For many writing systems, it
is necessary to affect contextual kerning or adjustments to mark positioning based on visually
but not sequentially adjacent glyphs. This is only possible if lookup contexts are tracked across
orthographic unit boundaries.

One thing that should be immediately apparent from this model is that it is progressive: features set
up conditions for subsequent features. The process of OpenType Layout is not complete until the

6.	No restriction, that is, other than the full extent of the glyph run as defined by font, size, direction and linebreak. It
should be noted here, though, that division of glyph runs sometimes results in problems of adjacency that, hence,
cannot be resolved in OTL other than by manual application of discretionary features. A good example of this is the
display of traditional Arabic dates involving the enclosing year sign, one or more numerals, and a following abbrevi-
ation. The latter may require a special form of letter, which the directional division of glyph runs means cannot be
triggered by the context of the year sign and numerals. A solution to this would be very welcome.

6

full progression of stages and their relevant features has been gone through and the desired typo-
graphic result achieved.

The tables that follow attempt to categorise and group the current set of registered OTL feature
tags according to this model. This should be considered preliminary work, subject to review. The
fourth column in the tables indicates recommended default state of the feature: 1/0 = on by default
and cannot be turned off; 1/1 = on by default, but can be turned off; 0/1 = off by default but can be
turned on.

1. Default glyph pre-processing features (recommended processing and font order)
Tag Name Comment State
locl Localized Forms 1/0
hngl Hangul Korean only 0/1

hojo
Hojo Kanji Forms
(JIS X 0212-1990 Kanji Forms)

Japanese only 0/1

jp04 JIS2004 Forms Japanese only 0/1
jp78 JIS78 Forms Japanese only 0/1
jp83 JIS83 Forms Japanese only 0/1
jp90 JIS90 Forms Japanese only 0/1
nlck NLC Kanji Forms Japanese only 0/1
smpl Simplified Forms 0/1
tnam Traditional Name Forms Japanese only 0/1
trad Traditional Forms 0/1
ltrm Left-to-right mirrored forms 1/0
ltra Left-to-right alternates 1/0
rtlm Right-to-left mirrored forms 1/0
rtla Right-to-left alternates 1/0
ccmp Glyph Composition / Decomposition 1/0
stch Stretching Glyph Decomposition 1/0
nukt Nukta Forms Indic only 1/0
akhn Akhands Indic only 1/0

2. Orthographic unit shaping (required processing order)
Tag Name Comment State

rphf Reph Forms
South and Southeast Asian scripts; triggers
reordering

1/0

pref Pre-Base Forms
South and Southeast Asian scripts; triggers
reordering

1/0

rkrf Rakar Forms South and Southeast Asian scripts 1/0
abvf Above-base Forms South and Southeast Asian scripts 1/0
blwf Below-base Forms South and Southeast Asian scripts 1/0
half Half Forms South and Southeast Asian scripts 1/0
pstf Post-base Forms South and Southeast Asian scripts 1/0

7

Tag Name Comment State

vatu Vattu Variants
Used, inconsistently, instead of <rkrf> for
some Indic scripts

1/0

cfar Conjunct Form After Ro Currently Khmer only 1/0
cjct Conjunct Forms South and Southeast Asian scripts 1/0

med2 Medial Forms #2
Currently Syriac only; see discussion of
topographical features

1/0

fin2 Terminal Forms #2
Currently Syriac only; see discussion of
topographical features

1/0

fin3 Terminal Forms #3
Currently Syriac only; see discussion of
topographical features

1/0

ljmo Leading Jamo Forms Korean only 1/0
vjmo Vowel Jamo Forms Korean only 1/0
tjmo Trailing Jamo Forms Korean only 1/0

3a. Standard typographic presentation (font order may vary; processed simultaneously with 3b)
Tag Name Comment State
abvs Above-base Substitutions 1/0
blws Below-base Substitutions 1/0
calt Contextual Alternates 1/1
clig Contextual Ligatures 1/1

fina Terminal Forms
May be (2) for some writing systems; see
discussion of topographical features

1/0

haln Halant Forms 1/0

init Initial Forms
May be (2) for some writing systems; see
discussion of topographical features

1/0

isol Isolated Forms
May be (2) for some writing systems; see
discussion of topographical features

1/0

jalt Justification Alternates
Could be considered (3b) if not applied by
standard justification algorithms

1/1

liga Standard Ligatures 1/1

medi Medial Forms
May be (2) for some writing systems; see
discussion of topographical features

1/0

mset Mark Positioning via Substitution Legacy feature, superceded by <mark> 1/0
pres Pre-base Substitutions 1/0
psts Post-base Substitutions 1/0
rand Randomize 1/1
rclt Required Contextual Forms 1/0
rlig Required Ligatures 1/0

vert Vertical Writing
Applied based on text layout; use this or
<vrt2>, not both; UTR50 implementation

1/0

vrt2 Vertical Alternates and Rotation
Applied based on text layout; use this or
<vert>, not both

1/0

8

3b. Standard typographic presentation (font order may vary; processed simultaneously with 3a)
Tag Name Comment State
afrc Alternative Fractions 0/1
c2pc Petite Capitals From Capitals 0/1
c2sc Small Capitals From Capitals 0/1
case Case-Sensitive Forms Could be (3a) if applied heuristically 0/1
cpct Centered CJK Punctuation Mostly CJKV fonts 0/1

cpsp Capital Spacing
Could be considered (3a) if applied
heuristically

0/1

cswh Contextual Swash [Probably redundant feature] 0/1
cv01-cv99 Character Variants 0/1
dlig Discretionary Ligatures 0/1

dnom Denominators
Mostly superceded by contextual <frac>
implementations

0/1

expt Expert Forms Currently Japanese only 0/1

falt Final Glyph on Line Alternates
Might be considered (3a) in some
implementations

0/1

frac Fractions
Could be considered (3a) if applied
heuristically

0/1

fwid Full Widths Mostly CJKV fonts 0/1
halt Alternate Half Widths See also <vhal> positioning 0/1
hist Historical Forms 0/1

hkna Horizontal Kana Alternates
Currently Japanese kana only; could be
applied automatically based on text layout;
cf. <vkna> vertical equivalent

0/1

hlig Historical Ligatures [Probably redundant feature] 0/1
hwid Half Widths 0/1

ital Italics
Mostly CJKV fonts; alternative to TTC/OTC
implementation

0/1

lnum Lining Figures 0/1
mgrk Mathematical Greek 0/1
nalt Alternate Annotation Forms 0/1

numr Numerators
Mostly superceded by contextual <frac>
implementations

0/1

onum Oldstyle Figures 0/1
ordn Ordinals 0/1
ornm Ornaments 0/1

palt Proportional Alternate Widths
Mostly CJKV fonts; see also <vpal>
positioning

0/1

pcap Petite Capitals 0/1
pkna Proportional Kana Japanese kana only 0/1
pnum Proportional Figures 0/1
pwid Proportional Widths Mostly CJKV fonts 0/1

9

Tag Name Comment State
qwid Quarter Widths Mostly CJKV fonts 0/1
ruby Ruby Notation Forms 0/1
salt Stylistic Alternates 0/1

sinf Scientific Inferiors
Redundant feature, superceded by typical
use of <subs>

0/1

smcp Small Capitals 0/1
ss01–ss20 Stylistic Sets 0/1
subs Subscript 0/1
sups Superscript 0/1
swsh Swash 0/1
titl Titling 0/1
tnum Tabular Figures 0/1
twid Third Widths Mostly CJKV fonts 0/1
unic Unicase 0/1

vkna Vertical Kana Alternates
Currently Japanese kana only; could be
applied automatically based on text layout;
cf. <hkna> horizontal equivalent

0/1

zero Slashed Zero 0/1

4. Positioning (recommended font order)
Tag Name Comment State

opbd Optical Bounds
Applied as part of optical margin alignment;
probably redundant, see <lfbd> & <rtbd>

0/1

lfbd Left Bounds Applied as part of optical margin alignment 0/1
rtbd Right Bounds Applied as part of optical margin alignment 0/1
valt Alternate Vertical Metrics Applied based on text layout 1/0
vpal Proportional Alternate Vertical Metrics Applied based on text layout 0/1
vhal Alternate Vertical Half Metrics Applied based on text layout 0/1
curs Cursive Positioning 1/0

dist Distances
Like <kern> but not subject to discretionary
disabling

1/0

kern Kerning 1/1
vkrn Vertical Kerning Applied based on text layout 1/1
mark Mark Positioning 1/0
abvm Above-base Mark Positioning South and Southeast Asian scripts 1/0
blwm Below-base Mark Positioning South and Southeast Asian scripts 1/0

mkmk Mark to Mark Positioning
Results may be subject to manual override
or editing in some applications

1/0

Especially observant readers will have noticed that two registered features are not included in these
tables: <aalt> Access All Alternates, and <size> Optical Size. The <aalt> feature is an access mecha-
nism for presenting glyph variants in a user interface, so is not expected to be applied to text as part

10

of layout. The <size> feature is a frankly ill-considered hijacking of the ‘GPOS’ table data structure to
record the size range for which a given type design is intended. If it were implemented at all within
the context of text layout, it would occupy a stage 0 (zero) affecting the selection of a particular font
within a family before OpenType Layout proper is applied. Other, methods for size-specific design
selection are available or proposed, and the <size> feature may be best deprecated.

Considering a special case: topographical features
I’m going to conclude by considering a notable special case among the OTL features: the <isol>
<init> <medi> and <fina> topographical features7 that substitute appropriate glyph variants based
on location. In addition to these, there are three specifically Syriac topographical features used in
orthographic unit shaping for that script, and several of the Indic orthographic unit shaping features
are also of a topographical nature but not relevant to this discussion. The existence of script-specific
topographical features for Syriac, though used in concert with the generic set, indicates a decision
that could have been made in the design of OpenType Layout that would have avoided ambiguity
about the rôle and application of the topographical features. It would have been possible to define
a set of such features specifically for orthographic unit shaping of scripts with inherent joining be-
haviours defined in Unicode, such as Syriac, Arabic, Mongolian, etc., and for this to be separate from
typographic presentation of topographical glyph variants that are a design element of particular
typefaces rather than an aspect of a writing system. Instead, we currently have a set of features that
are used for orthographic shaping for some writing systems and for typographic presentation for
others, and which, more confusingly, apply to different topographies depending on the writing sys-
tem (lettergroups in the case of joining scripts, words in the case of others, and presumably phrases
if applied to a script such as Thai that does not visually break individual words).

There are a number of options for how topographical substitutions could be handled, moving
forwards. One option is simply to continue to live with this dual use, but to better define the expect-
ed behaviour and proper application of the feature for various writing systems. The goal in that case
would be to make clear that in a typographic presentation context these features may apply to any
writing system, and will be appropriate to particular styles or individual typeface designs. The fea-
tures may be used, for instance, for the Latin writing system in cursive ‘script’ style typefaces; while
the <init> feature is currently spec’d by Microsoft for ‘mandatory presentation forms’ in the Bengali
writing system, <fina> or other topographic substitutions would be appropriate to some letters in
some styles of Bengali type.

The limitation of this option is that it enforces a distinction at the feature level between different
topographies for different writing systems, which in effect means that word-level topographies—as
distinct from lettergroup topographies—are not accessible to writing systems with standardised
joining behaviours defined in Unicode. So, for example, application of the existing features to the
Arabic writing system is based on joining behaviour analysis and hence lettergroup topography,
meaning that there is no way to specifically address and substitute initial or final word glyphs in
Arabic typeface designs.

7.	These features are sometimes referred to as positional, but that term seems too similar to positioning. Locational has
been suggested, but the notion of text consisting of topographies may be a helpful one in recognising new ways to
address aspects of layout.

11

Change log
Revision 1.1
After consultation with Ken Lunde, Adobe, moved CJK form selection features to default glyph pre-processing stage (1).
Note that this means this stage now contains both 1/0 (required) and 0/1 (discretionary) features.

Revision 1.2
Incorporated additional feedback from Ken Lunde to ordering and annotation of CJK layout features in tables. After
discussion with David Lemon, Adobe, modified statement regarding <size> feature to reflect uncertain suitability of
recent new size-selection mechanisms to all font families. Made minor revisions to some wording. Added change log.

This suggests another option, which is to register a new set of specifically typographic presenta-
tion features for word-topographic substitutions, to be applied after orthographic unit shaping and
independently of substitutions determined by joining behaviour. Once this is considered, features
for other topographies suggest themselves: first glyph on line, for example, or even page or text
block topographies enabling, for instance, taller display glyphs on the top line and deeper ones on
the bottom line, as seen in many manuscript traditions. This begins to move the discussion in the
direction of new features and alternative layout models, so seems a good place to end this paper.

