
 Beyond shaping
and towards a general model of OpenType typography

John Hudson, Tiro Typeworks Ltd
International Unicode Conference 39, 28 October 2015

This paper was originally presented at the 39th International Unicode
Conference, in Santa Clara CA, on Wednesday 28 October 2015. It was
presented as the final contribution to a joint session on ‘Universal Shap-
ing’, following presentations by Roozbeh Pournader and Behdad Esfahod
(Google), and the inventor of the Universal Shaping Engine, Andrew Glass
(Microsoft).

OpenType is a perplexing technology. Seen in some lights, it appears re-
markably successful. It may be reasonably claimed to be the most broadly
supported font format ever. It is the default format used across major op-
erating systems, both desktop and mobile. It has been adopted, under the
name Open Font Format, as an ISO standard. It is the format that almost all
of the world’s type designers and font manufacturers are regularly making
and licensing. It is relied on by millions of users around the world to display
their writing systems in appropriate, legible form. And yet…

In another light, OpenType can be seen as, if not a failure, at least a
collection of unfulfilled promises. Nearly twenty years after it was first
announced, support for OpenType Layout — that which most obviously
distinguishes the format from preceding technologies — remains partial,
piecemeal, and inconsistent. Some aspects remain completely unimple-
mented. While the font data format, including its large legacy component,
is well-specified, there has never been an implementation specification,
nor even documented agreement on best practices, or the sort of defined
expectation of outcomes that would enable formal testing of implementa-
tions against something other than, well, each other.

At the recent ATypI congress in Brazil, participants put forward sugges-
tions and feature wish lists for OpenType 2.0. Clearly, OpenType is not only
an important part of our typographical present, but of the foreseeable fu-
ture. Will this mean another twenty years of ad hoc and independent im-
plementations, by developers who often fail to see the forest for the trees? 

In today’s conference session, my colleagues have focused on a crucial but
relatively narrow aspect of text layout, which is standard shaping and dis-
play of complex writing systems. This involves glyph processing features
and reordering that occur during these three, highlighted phases of Open-
Type Layout: orthographic unit shaping, standard typographic presenta-
tion, and positioning. In the Universal Shaping Engine model, these phases
involve substitution of necessary forms to process individual clusters prior
to reordering, then, after reordering, further substitutions to refine display
of the clusters and their relationship to each other and, lastly, arrange-
ment of the glyphs using varieties of positioning features, including cursive
connection, kerning, and mark positioning as appropriate to the writing
system and typeface design.

I now want to go ‘beyond shaping’, and talk about what comes before
and after these phases, and some of the issues that arise in the other parts
of layout. I also want to talk about the whole structure, which I think is
something to which not enough attention has been given.

0	 Script	itemisation	and	run	segmentation

1	 Default	glyph	pre-processing

2	 Orthographic	unit	shaping

 [Reordering]

3a	 Standard	typographic	presentation

3b	Conditional	typographic	presentation

4	 Positioning

5	 Line	layout	and	line	breaking

6	 Justification

OpenType Layout begins with itemisation of a string of characters, and di-
vision of that string into runs for subsequent processing, based on Unicode
script property. The runs are further segmented according to additional
criteria, such as direction, font and size. Script itemisation determines to
which of a number of possible layout engines a run will be passed for pro-
cessing, and at least some of what happens to it when it gets there. So
obviously this is a crucial step, along with the cluster analysis that then
occurs in the case of scripts that follow the Brahmi model, on which the
orthographic unit shaping phase relies.

0	 Script	itemisation	and	run	segmentation

1	 Default	glyph	pre-processing

2	 Orthographic	unit	shaping

 [Reordering]

3a	 Standard	typographic	presentation

3b	Conditional	typographic	presentation

4	 Positioning

5	 Line	layout	and	line	breaking

6	 Justification

Necessary though this itemisation and segmentation is, once segment-
ed things tend to stay segmented and, as we’ll see later, this introduces
problems for later aspects of layout, in which the relationship of adjacent
glyphs at run boundaries are not resolved.

Other implementation issues arise in this phase, and would benefit
from more explicit specification of the correct way to do things. I’ve had
developers tell me that it is ‘obvious’ how characters with the Unicode
script property ‘Common’ — e.g. punctuation — should be rolled into runs
with adjacent characters of specific scripts to enable preferred form substi-
tutions or kerning. Yet, over the years, I’ve seen plenty of inconsistency in
how this is done by different software makers, and in different versions of
software from the same makers. There does seem, now, to be convergence
on a common practice, but it would surely have been helpful to have a
formal specification of the expected way to do this from the outset.

There are related issues around display of paired common characters — 
such as opening and closing quotes or parentheses — enclosing text in
multiple scripts, which potentially involve distinctive preferred forms or
positioning. What gets precedence? Should paired characters always cor-
respond to each other in form and position, or should they react to the
script to which they are individually adjacent? There isn’t an obviously cor-
rect answer to that question: very likely there will be varying preference
among users. The issues are in some respects similar to those that arise
in bi-directional layout, but involving decisions about application of glyph
processing features in one place based on what has happened in another,
and with no standard algorithm that says what is the proper default thing
to do.

0	 Script	itemisation	and	run	segmentation

a)	once	segmented,	always	segmented?

b)	integration	of	‘Common’	characters

c)	handling	of	paired	characters,	e.g. “ ” ()

Finally, there are inconsistencies in the interpretation of the relationship
of script and language system tags in fonts, and how these relate to docu-
ment language tagging. So, for example, if a font contains variant numeral
glyphs that align in style or height with Hebrew letters, how are these ac-
tivated? In this example, the text is tagged as ‘Hebrew’ in the respective
documents, but only InDesign interprets this as meaning that a Localised
Forms <locl> feature substitution for the numerals under the font’s He-
brew script and language system tag should be applied.

Lacking a clear implementation specification, I can’t tell you which of
these is technically correct, although it isn’t difficult to see which is more
useful.
 

0	 Script	itemisation	and	run	segmentation

Microsoft	Word	2013:

 Latin 01234 56789 עברית
	 	 Latin	01234	 עברית 56789
Adobe	InDesign	CS6:

 Latin 01234 56789 עברית
	 	 Latin	01234	 עברית �����

The default glyph pre-processing phase is relatively straightforward. The in-
teraction of layout engine and font begins with the location of the default
glyph mapped to each Unicode character in the font cmap table. Glyph
pre-processing features perform substitutions on these default glyphs,
such as substituting language-specific forms, composing combinations of
base and combining mark characters as diacritic glyphs or, conversely, de-
composing default glyphs into one or more component elements. What all
these features have in common is that they set up the initial sequence of
glyphs to be processed by subsequent phases.

The only significant issue regarding this phase is identification of exactly
which features should be processed in it and, for the font developer, the
order in which these will be applied.

0	 Script	itemisation	and	run	segmentation

1	 Default	glyph	pre-processing

2	 Orthographic	unit	shaping

 [Reordering]

3a	 Standard	typographic	presentation

3b	Conditional	typographic	presentation

4	 Positioning

5	 Line	layout	and	line	breaking

6	 Justification

Most of the rest of this conference session has dealt with implementation
of the orthographic unit shaping phase, in the context of the Universal
Shaping Engine. I won’t say much more about it, other than to reiterate
that for many writing systems it is dependent on discrete cluster analysis:
a further level of segmentation. One of the huge improvements of the
Universal Shaping Engine model is that it makes clear that this cluster seg-
mentation is only applicable to this phase, and that once the orthograph-
ic forms are arrived at and reordered, processing of subsequent phases
should be applied across the whole glyph run and not just at the individual
cluster level. This is, of course, essential to enabling contextual interac-
tion between adjacent clusters, the impossibility of which was a major
flaw in implementations of previous Indic shaping engines. Unfortunately,
a fix to those engines that was agreed last April has, to date, only been
implemented in Apple’s CoreText engine and the open-source Harfbuzz
engine. Microsoft and Adobe’s implementation remain unable to support
cross-cluster interaction.
 

0	 Script	itemisation	and	run	segmentation

1	 Default	glyph	pre-processing

2	 Orthographic	unit	shaping

 [Reordering]

3a	 Standard	typographic	presentation

3b	Conditional	typographic	presentation

4	 Positioning

5	 Line	layout	and	line	breaking

6	 Justification

The purpose of the standard typographic presentation phase is to arrive
at an appropriate default visual representation of the encoded text, taking
into account the norms of the writing system as well as the conventional
text culture with its traditions, aesthetic canons, and reader expectations.
In practice, complex scripts are better supported in this regard, through
shaping engines, than ostensibly simple scripts such as Latin, because
standard typographic presentation forms — ligatures, contextual variants,
etc.— are able to piggy-back on the need for orthographic shaping. Where
such features are perceived by software developers as optional extras,
rather than part of the obligatory representation of text, they have seldom
been prioritised.

It should be noted that the standard typographic presentation phase
includes both required OpenType Layout features, by which I mean those
that must be active at all times, and the aptly names standard features,
which are expected to be active by default but might be disabled by the
user. Lack of consistency in support for these features, means of course
that a common standard and default presentation of text across software
remains unrealised.

0	 Script	itemisation	and	run	segmentation

1	 Default	glyph	pre-processing

2	 Orthographic	unit	shaping

 [Reordering]

3a	 Standard	typographic	presentation

3b	Conditional	typographic	presentation

4	 Positioning

5	 Line	layout	and	line	breaking

6	 Justification

In previous talks and papers, I have referred to the next phase as ‘discre-
tionary’ typographic presentation, in the sense that the features are off by
default but a user might turn them on at his or her discretion. I recently
realised, though, that this term might encourage the very thinking that I
want to eliminate: the idea that this whole phase is somehow optional, at
the discretion of the software maker to ignore. So I am now calling this the
conditional typographic presentation phase. The conditions in question
may be defined by standards for display of particular kinds of text — for
instance ‘ruby’ notation of Japanese kanji —, or by the particular intention
of an individual user regarding the styling of a paragraph, a word, or even
a single character.

This is where we can start to consider the forest as well as the individual
trees. So far, we’ve initiated a process, the end goal of which is typogra-
phy. In its broadest sense, typography is the articulation of text through
the design and arrangement of type. In fundamental terms, this means
making decisions about how text is presented, so it should stand to reason
that a typographic technology is one that enables such decisions to be
made. Implementations of OpenType Layout that support only partially
the standard typographic presentation phase, and the conditional typo-
graphic presentation phase not at all, are not typographic technologies.
Their makers have come as far as they think they need to present this or
that script and language according to their own understanding of a mini-
mal acceptable level of legibility and orthography, and then walked away
from the rest of the task.

When Microsoft and Adobe first announced OpenType, in 1996, the
two companies had different priorities: respectively, complex script shap-
ing and typographic design. This found expression in the initial set of lay-
out features registered by each company, and in the priorities adopted in
the implementation of OpenType Layout in their software. So, for example,
Microsoft registered features and implemented support for Arabic and
Indic script shaping, but was slow to implement support for typograph-
ic features for European scripts, such as common ligatures and smallcaps,
while Adobe registered and supported features for many typographic
refinements for European and East Asian scripts, but was slow to enable
complex script shaping and even whole categories of OTL lookup types.

Within their respective areas of priority, each company established de
facto standards for feature implementation, in the absence of any formal
specification of OpenType Layout beyond the font format documentation
and supplementary, script-specific shaping specifications produced by Mi-
crosoft (these were often written ex post facto, and did not always accu-
rately describe the behaviour of the layout engines that they ostensibly
specified). Unfortunately, these implementations tended to perpetuate
the initial difference in priorities between script shaping and typography,
such that very different levels of typographic sophistication now pertain
to different writing systems, affecting the ability of publishers, typograph-
ic designers, and font makers to produce consistent quality in their work
across multiple scripts and languages.

0	 Script	itemisation	and	run	segmentation

1	 Default	glyph	pre-processing

2	 Orthographic	unit	shaping

 [Reordering]

3a	 Standard	typographic	presentation

3b	Conditional	typographic	presentation

4	 Positioning

5	 Line	layout	and	line	breaking

6	 Justification

We are now in a situation where the surely desirable goal of an equitable,
high level of typographic richness and control — regardless of script or lan-
guage —, seems as likely to be stymied by two-decades of legacy behav-
iour and backwards compatibility concerns as to find eventual fulfillment.
Within this situation, the Universal Shaping Engine provides to newly en-
coded scripts a rapid and well-specified path not just to orthographic shap-
ing but also to typographic control. Andrew Glass’ published explanation
of how the Universal Shaping Engine works follows a similar structure to
my own ‘general model’. Note that ‘Custom substitution features request-
ed by the application’ anticipates conditional typographic presentation:
the new shaping engine is ready to receive those decisions made by the
user about the appearance and articulation of text.

Do I need to draw attention to the irony that a technology designed to
facilitate support of latterly encoded minority and historical scripts — the
sort of scripts that might otherwise not get supported at all — provides a
higher level of typographic functionality than that afforded to most of the
world’s major writing systems in much current software?

3b	Conditional	typographic	presentation

Back to Specifications Overview

Creating and supporting OpenType fonts for the
Universal Shaping Engine

Microsoft Typography
Last updated: February 2015

This document presents information that will help font developers in creating OpenType fonts for complex scripts
included in the Unicode Standard 7.0., but not otherwise supported by a dedicated shaping engine.

Contents

Introduction

How the Universal Shaping Engine works

Other encoding issues

Appendix

Introduction

This document targets developers implementing shaping behavior compatible with the Microsoft OpenType
specification for complex scripts not supported by a dedicated shaping engine. It contains information about
terminology, font features and behavior of the Universal Shaping Engine (USE). While it does not contain
instructions for creating fonts, it will help font developers understand how the Universal shaping engine
processes complex script text.

How the Universal Shaping Engine works

The Universal shaping engine processes text in stages. The stages are:

1. Character classification

2. Split vowel handling

3. Cluster validation

4. OpenType feature application I

a. Basic cluster formation, GSUB

5. Character reordering

6. OpenType feature application II

a. Topographical features, GSUB

b. Standard typographical features, GSUB

c. Custom substitution features requested by the application, GSUB

d. Positional features, GPOS

Character classification

Most issues around positioning have, over the years, involved limited and
piecemeal support. Again, complex scripts have tended to come out ahead,
due to the very obvious need for dynamic mark positioning. Some assump-
tions persist, regarding the kinds of positioning that are expected for a giv-
en writing system, so while, for instance, cursive connection lookups are
supported in Arabic layout engines, they are not necessarily supported for
Latin fonts, even cursively connecting ones. This kind of assumption limits
the potential for type designers to invent new styles of font. Again, the
Universal Shaping Engine model does much better in this regard, by mak-
ing every lookup type and feature available to every script that is passed
through the engine.

0	 Script	itemisation	and	run	segmentation

1	 Default	glyph	pre-processing

2	 Orthographic	unit	shaping

 [Reordering]

3a	 Standard	typographic	presentation

3b	Conditional	typographic	presentation

4	 Positioning

5	 Line	layout	and	line	breaking

6	 Justification

We move now into what may be considered the forward observation
post of OpenType typography. What I’ve discussed so far is stuff that has
been  implemented, however imperfectly, and which is supported fairly
widely, however inconsistently. The outcome is a sequence of glyphs of
appropriate form, interaction, and positioning according to the initial ite-
misation and segmentation, script and language-specific pre-processing,
orthographic unit shaping, standard and conditional typographic presenta-
tion, and positioning. This is the stage where one might consider the work
to be done. In fact what one may have is a sequence of glyphs in which
adjacent shapes in different runs may be colliding or otherwise in need of
additional refinement, and in which determination and application of line
breaking may require extra shaping behaviour.
 

0	 Script	itemisation	and	run	segmentation

1	 Default	glyph	pre-processing

2	 Orthographic	unit	shaping

 [Reordering]

3a	 Standard	typographic	presentation

3b	Conditional	typographic	presentation

4	 Positioning

5	 Line	layout	and	line	breaking

6	 Justification

The Arabic date sign and its calendar abbreviation provide a particularly
tricky example of the run boundary problem. Here we have an example of
year notation for the Islamic Hijri calendar, identified by the Arabic letter
hā’, and the corresponding year in the Gregorian calendar, identified by
the letter mīm (from al-miladi) in Arabic, and the letter ‘ayn (from ‘issa-
wi) in Urdu. In this font, the standard, descending forms of mīm and ‘ayn
collide with the tail of the year sign, and would be better replaced by the
variant forms shown in green. At present, there is no way to automate
this substitution within OpenType Layout, because the change of direction
between the left-to-right numerals and the right-to-left letter means that
there’s no way to express the context. This is where the ‘once segmented,
always segmented’ issue that we identified in the first phase of text pro-
cessing comes back to bite us. Although this sequence of characters forms
a graphical unit, it is processed as discrete, segmented runs determined by
the directionality of the characters.

A number of ideas have been put forward regarding ways to address
this kind of line layout issue, both specific — e.g. treating the Arabic year
sign element as a special construct, aided by layout intelligence outside
the font — and general, e.g. de-segmenting runs at some stage (maybe
earlier than this phase) and either applying a common glyph directionality
or introducing a mechanism for lookups to specify directionality for pro-
cessing. As I said, we’re now in the forward observation post, looking at
the territory to be covered, and figuring out how to proceed.
 

5	 Line	layout	and	line	breaking

U+0601 ARABIC	SIGN	SANAH

ع ١٥٧١ م   ١٥٧١ ٩٧٩ ه  

ع ١٥٧١ م   ١٥٧١ ٩٧٩ ه  

Line breaking may introduce its own complexities, of which my favourite
example is Uyghur hyphenation. Uyghur is a Turkic language written in a
variant of the Perso-Arabic script. Since Turkic languages tend to longer
words than are found in Arabic, Uyghur typesetters introduced word
breaking and hyphenation, both of which are alien to most other uses of
the script. As you can see in the highlighted example the line break be-
tween the third and fourth lines, the practice is to retain the shaping of
the letters as if they were still connected. There’s much about this style
of typography that contravenes general practice of Perso-Arabic script
grammar — including the original application of that grammar, in the nas-
ta‘līq style, to the Uyghur language —, but it is what a large modern user
community is used to. More interesting, to me at least, is the implication
of Uyghur hyphenation practice for the general model of OpenType typog-
raphy, which is, of course, that elements of Arabic script shaping, which
have been dealt with already back in the orthographic unit shaping and
standard typographic phases, need also to be apply during the line break-
ing phase. This suggests that at least some aspects of OpenType glyph sub-
stitution and positioning may need to be applied more than once.

In passing, I’ll also note that the particular forms of those connecting
letters on either side of the hyphenated word break are easily determined
in a simplified style such as shown here. In a richer script style, the contex-
tual selection of appropriate form for actually connected letters may differ
from the forms to be used at a linebreak, being determined both by what
comes before and what comes after.
 

5	 Line	layout	and	line	breaking

Uyghur	hyphenation

...تۇتــۇپ، يولنىــڭ ياقىســىغا تۇرغۇزۇپ
قويغان ئەخلەت ماشىنىسىنىڭ ساندۇ-

قىغاتاشــلىماقچى بوپتــۇ. بۇنــى كۆرگەنھې ــ-
 لىقــى يىگىت.

We come at last to justification. We’ve shaped text, we’ve applied suita-
ble typographic features, we’ve positioned the pieces, and we’ve broken
the text into lines to fit the frame (and possible re-applied some aspects
of shaping to clean up the lines and the line breaks). Now we want to
optically balance the margins by adjusting aspects of those lines to make
them all the same length. It may be news to many people that since the
mid-90s the OpenType format has included a Justification table (JSTF) that
is designed to assist this phase: it is, to my knowledge, entirely unimple-
mented in line layout software, fonts, or tools for making fonts. The table
provides for a prioritised set of methods to be tried during justification to
obtain the best results. It is appropriately a font-level mechanism, because
the best results in justification are by their nature design dependent, not
merely script or language dependent, nor reducible to a crude algorithm
of increasing or decreasing word spacing regardless of script and type style.
The JSTF table was designed to be able to handle an iterative approach
to justification, in which several methods in succession — variant wider or
narrower letterforms, extended connections, spacing adjustments — are
applied to achieve progressively finer results.

I’ve heard some developers question whether the JSTF table is im-
plementable, and others express concern about the processing costs of
running an iterative approach to justification that may, in turn, require
iterative re-application of some aspects of shaping. These are not insig-
nificant concerns, but given just how crude justification of many non-Eu-
ropean writing systems is in current software, there is clearly room for im-
provement. Even if the JSTF table as currently specified isn’t the ultimate
solution, we should be considering how to fulfill this particular promise of
OpenType, twenty years after it was made.

0	 Script	itemisation	and	run	segmentation

1	 Default	glyph	pre-processing

2	 Orthographic	unit	shaping

 [Reordering]

3a	 Standard	typographic	presentation

3b	Conditional	typographic	presentation

4	 Positioning

5	 Line	layout	and	line	breaking

6	 Justification

So there you have, in broad structural terms, a general model of OpenType
typography. A white paper on categorisation of OTL features within the
model, as well as a grab-bag of other presentations and articles to which
I’ve alluded, is available at the URL shown in this slide.

There are, of course, many details that I have omitted or passed over
too briefly within each of the phases I have described. But I want to en-
courage you all to think about the whole, and not just the parts that per-
haps pertain most directly to your individual tasks and responsibilities, or
to your company’s immediate priorities.

Unless we have a sense of the goal — of OpenType typography as a
structured, integrated technology for making and applying decisions about
the presentation of text — we risk continuing as we have for two decades:
treating it as a bucket of arbitrary features to be added to products in ad
hoc and piecemeal ways, without regard to consistency, usability, or any
overall strategy.

0	 Script	itemisation	and	run	segmentation

1	 Default	glyph	pre-processing

2	 Orthographic	unit	shaping

3a	 Standard	typographic	presentation

3b	Conditional	typographic	presentation

4	 Positioning

5	 Line	layout	and	line	breaking

6	 Justification

www.tiro.com/John

http://www.tiro.com/John

