
A Soyombo test case for the Universal Shaping Engine

These slides were first presented by John Hudson (Tiro Typeworks) at the 38th International
Unicode Conference, as part of a larger, joint presentation with Andrew Glass (Microsoft)
entitled Shaping in the Post-Tofu Era.* The overall presentation consisted of an introduction to the
background and business case for the new Universal Shaping Engine, followed by the Soyombo
test case as illustrated in these slides, and then a live demo of the Soyombo font in use in a virtual
machine running a build of the new engine with preliminary Soyombo data.

The Universal Shaping Engine (USE) is a new Unicode layout engine within the Microsoft Uniscribe
layout component, introduced in the Windows 10 technical preview. The strategic goal of USE is
to dramatically reduce the amount of time between the proposal of a script for encoding in the
Unicode Standard and support for that script in software, which currently averages eight years.
The business case for USE focuses on the diminishing returns on investment in dedicated shaping
engines for individual scripts, especially for historical and minority scripts with few and sometimes
impoverished users.

Unlike previous, script-specific shaping engines, the Universal Shaping Engine is based on a generic
cluster model that requires no specialised knowledge of a particular writing system, but only a set
of character property data from the Unicode Standard. This data is employed by USE to handle
some aspects of cluster-level reordering—e.g. left-side vowels for Indic scripts—, but most of
the responsibility for script behaviour resides with the font’s OpenType Layout (OTL) tables. In
essence, this is a return to the original intent of the OpenType Layout architecture, in which script
shaping behaviour is governed by the font lookups and their ordering, rather than by fixed feature
ordering applied by the shaping engine.

At present, a small number of recently supported scripts are passed to the Universal Shaping
Engine as implemented in the Windows 10 technical preview. In future, new OTL script tags could
be defined to push Indic and other scripts to the new engine, enabling greater freedom for font
developers in deciding how to handle layout.

 * ‘Tofu’ is a term popularised by Google to refer to the .notdef glyph that represents unsupported characters when
the selected font or fallback fonts do not contain glyphs for them. The .notdef glyph frequently consists of an empty
rectangle �, hence ‘tofu’. The ‘post-tofu era’ implies a software environment where every character is supported but,
as Andrew Glass’ part of this presentation stressed, for many writing systems simply displaying a glyph is inadequate.

Font development for complex scripts often involves reconciling different ways of thinking
about a writing system. At the most basic level, there is the way I think about a script as a type
designer, taking into account graphical and cultural aspects, and how the Unicode Standard thinks
about a script, as embodied in how it encodes that script and what properties are assigned to its
characters.

Type designer

Unicode

Until now, I’ve also needed to take into account how Microsoft’s written specification thinks about
the individual script, and how the shaping engine for that script actually works. These don’t always
correspond.

[In practice, the script specs have tended to be written after the fact, and tend to reference each
other rather than record what the shaping engine is actually doing. This means, of course, that
the specifications are sometimes unhelpful or misleading as a guide to making fonts that work
correctly with the shaping engines.]

Type designer

Unicode

Microsoft
script spec

Microsoft
shaping engine

Of course, I also need to take into account how Adobe thinks about the script, how Apple thinks
about it, and the makers of the open source Harfbuzz engine. Every once in a while I see evidence
of some other layout process at work, some unknown engine. Unsurprisingly, since there has
never been a specification for how to implement OpenType Layout, these various engines have
incompatible behaviours for some scripts, which can make it difficult or impossible to make a font
that works equally well in all software.

Type designer

Unicode

Microsoft
script spec

Microsoft
shaping engine

Adobe

Apple

Harfbuzz

etc.

When it comes to a script that is newly encoded in Unicode, or one that is in the proposal stage, I
simply don’t know how any of these shaping engines is going to think about the script. This means
that before I can start making a font with any reasonable hope that it will work, I need to wait
for at least one of these shaping engines—usually Microsoft’s—to support it, and then pray that
others will do so compatibly, sooner rather than later, or at all.

This is one of the reasons why it can take many years for a script to make its way from the Unicode
proposal stage to actually being supported in fonts and applications.

Type designer

Unicode

Microsoft
script spec

Microsoft
shaping engine

Adobe

Apple

Harfbuzz

etc.

?

?

?

?

?

?

The Universal Shaping Engine greatly simplifies the situation. It is data-driven, which means
that it can be easily and quickly updated when new scripts are added to Unicode. It relies on
Unicode character property data, which means that the presumptions it makes about characters
are documented and can be confirmed by the font developer as soon at the script encoding is
published by the Unicode Consortium. The generic cluster model at the heart of the Universal
Shaping Engine is also documented, meaning that it is possible for the font developer to
make reliable predictions of the results of script shaping. Finally, because the engine puts few
constraints on OpenType Layout feature and lookup ordering and structures, it is possible for
the font maker to use tools like Microsoft’s Visual OpenType Layout Tool (VOLT) and similar font
development applications to test layout behaviour for a script even before the Universal Shaping
Engine is updated with the new script data.

Type designer

Shaping engine

Unicode

Soyombo is an indigenous Mongolian script, invented in the 17th Century by Zanabazar, the
spiritual leader of Tibetan Buddhism among the Kalkh Mongols. His name is a Mongolianisation
of a Sanskrit word meaning ‘He who has the thunderbolt of knowledge’. Soyombo text is easily
recognised by the standard feature of a frame around each letter or orthographic syllable,
consisting of a head triangle and a bar down the right side. The script is not in modern use, and has
few competent readers. It remains important, though, as a cultural signifier in Mongolia, appearing
on banners and prayer flags, and in the official symbol of the nation: 𑪝

The Soyombo script is not yet encoded in Unicode (as of November 2014). There have been
two draft proposal prepared by Anshuman Pandey through the Script Encoding Initiative, and
the Soyombo test case for the Universal Shaping Engine is based on the most recent of these.
Needless to say, this font will not be finalised or released until the script is formally encoded and
the standard codepoints and character properties confirmed.

Photo credit: Yastanovog. Licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

��Soyombo an indigenous script of Mongolia
	 invented	in	1686	by	Öndör	Gegēn	Zanabazar	(Jñānavajra)

[In the first part of the Unicode conference presentation, Andrew Glass had discussed, with diagrams, the generic
cluster model. The slides now step through the elements of a Soyombo cluster, which can be understood as a subset
of the generic cluster model used by the Universal Shaping Engine.]

The first element of a Soyombo cluster is an optional prescript initial consonant. There are four
of these, each taking the form of a small sign on the upper left of the graphical cluster. This is
illustrated here by the prescript La, written as a horizontal stroke. In Anshuman Pandey’s most
recent draft encoding proposal, these four initial consonants are atomically encoded, since the use
of prescript vs full form is not orthographically predictable.

	 𑪄𑪄
	 𑪄𑪄	
 11A84
 iLA

The second element of the cluster—and the only non-optional element—is the base letter, in this
case Ka (Sanskrit; the Mongolian pronunciation is Ga). As in Brahmi-derived scripts, each consonant
letter carries an inherent short -a vowel.

An independent vowel letter A (not shown) serves as a carrier for dependent vowel signs. In the
draft encoding, only this one vowel letter is encoded, and other vowels represented by applying
vowel signs to this base.

	 𑪄𑪄𑪄𑪄𑪄𑪄
	 𑪄𑪄	 �𑩜𑩜𑩜
 11A84 11A5C
 iLA KA

The third element is an optional gemination sign. This is encoded as a triangular mark above the
base letter, but is graphically represented by a merging of two triangles. Note that this slightly
pushes down the base letter shape, and also affects the height of the top of the bar on the right.

	 𑪄𑪄𑪄𑩜𑩜�
	 𑪄𑪄	 �𑩜𑩜𑩜𑩜 ◌𑪖𑪖
 11A84 11A5C 11A96
 iLA KA gemin.

The fourth element comprises two characters: a subjoiner control character and a second
consonant letter. Graphically, the subscript letter is usually simply a lowered form of the base
letter shape minus it’s triangle. In this case, though, the base letter is shortened vertically, and the
sequence takes a special, broken form of the bar on the right.

A Soyombo syllable may include more than one subscript letter (not shown), each encoded as the
subjoiner control character followed by the letter character.

	 𑪄𑪄𑪄���
	 𑪄𑪄	 �𑩜𑩜𑩜𑩜 ◌𑪖𑪖	 [SBJ]	 �𑩠𑩠𑩠
 11A84 11A5C 11A96 11A97 11A60
 iLA KA gemin. subj. NGA

The fifth element is an optional vowel sign, in this case the short -i. Vowel signs may appear at the
top or bottom, or to the right of the cluster.

Soyombo clusters may include more than one vowel sign (not shown), to indicate a diphthong.

	 𑪄𑪄	 �𑩜𑩜𑩜𑩜 ◌𑪖𑪖	 [SBJ]	 �𑩠𑩠𑩠𑩠𑩠 𑩑𑩑
 11A84 11A5C 11A96 11A97 11A60 11A51
 iLA KA gemin. subj. NGA sI

	 𑪄𑪄𑪄��𑩑𑩑𑩑

The sixth element is a vowel lengthening mark: a short diagonal stroke at the bottom of the bar on
the right.

	 𑪄𑪄	 �𑩜𑩜𑩜𑩜 ◌𑪖𑪖	 [SBJ]	 �𑩠𑩠𑩠𑩠𑩠 𑩑𑩑	 ◌𑩛𑩛
 11A84 11A5C 11A96 11A97 11A60 11A51 11A5B
 iLA KA gemin. subj. NGA sI v.length

	 𑪄𑪄𑪄��𑩑𑩑𑩑𑩑𑩑

The seventh element is an optional nasalisation mark, an anusvara, which appears as a ring at the
top of the cluster.

	 𑪄𑪄	 �𑩜𑩜𑩜𑩜 ◌𑪖𑪖	 [SBJ]	 �𑩠𑩠𑩠𑩠𑩠 𑩑𑩑	 ◌𑩛𑩛	 ◌𑪔𑪔
 11A84 11A5C 11A96 11A97 11A60 11A51 11A5B 11A94
 iLA KA gemin. subj. NGA sI v.length nasal

	 𑪄𑪄𑪄��𑩑𑩑𑩑𑩑𑩑𑪔𑪔

The final element is an optional final consonant. Unlike Indic scripts, in which a syllable-terminating
consonant sound is usually indicated by the presence of a virama ‘vowel-killer’ sign, Soyombo uses
special syllable-final letters. These are typically small in size and sit close to, or connect with, the
righthand bar. Note that the length of the bar on the right extends downwards to accommodate
the final consonant within the frame.

When displayed with a below vowel sign (not shown), the final consonant is vertically aligned with
the vowel (typically of reduced width) and sits to its right.

So that’s how a Soyombo cluster is structured, and those are the elements that need to be
displayed by a font. Looking at the overall typeform, it is possible to conceive of a number of ways
this could be handled, from a highly inefficient precomposed glyph for each complete cluster, to
some combination of precomposed base glyph plus combining marks. As I examined the graphical
behaviour of the script, though, it seemed to me that the most flexible approach would be...

	 𑪄𑪄	 �𑩜𑩜𑩜𑩜 ◌𑪖𑪖	 [SBJ]	 �𑩠𑩠𑩠𑩠𑩠 𑩑𑩑	 ◌𑩛𑩛	 ◌𑪔𑪔	 ◌𑪎𑪎
 11A84 11A5C 11A96 11A97 11A60 11A51 11A5B 11A94 11A8E
 iLA KA gemin. subj. NGA sI v.length nasal fM

	 𑪄𑪄𑪄��𑩑𑩑𑩑𑩛𑩛𑪔𑪔𑪎𑪎

...to explode the cluster, to break it down into separate glyphs for each element, and then
compose them dynamically, using OpenType GPOS anchoring. This enables shape details, such as
the shape and height of the right bar, or of the upper triangle (there are three forms of simple
and geminated triangle heads in the font), to be contextually varied in the font GSUB relative to
adjacent shapes, sometimes across intervening contexts.

The following slides show the glyph processing for another sample cluster, and illustrate how I get
from the text encoding to the display.

𑪎𑪎 � ��𑩑𑩑
𑪔𑪔𑪄𑪄 � 𑩛𑩛

This is the Soyombo character Ka as we can expect it to appear in the Unicode Standard code chart.
I think it’s safe to say that for the vast majority of fonts for every script in Unicode, the default
glyph for a character—i.e. the glyph mapped to that character in the font cmap table—basically
corresponds, allowing for stylistic differences, to the representation published in the code chart.

	 �𑩜𑩜𑩜
11A5C

SOYOMBO LETTER KA
• Mongolian ga

In my Soyombo font, though, this red shape is the encoded glyph for the Ka character in the
font cmap table. The glyph represents only the distinctive portion of the letter, minus the frame
components, and the glyph is treated as a combining mark (as indicated by the dotted circle, not
part of the glyph). Note that this is only a glyph level mark assignment, recorded in the font GDEF
table; at the character level, this remains a letter.

	 ◌𑩜𑩜
11A5C
/ soKa /

The first thing that happens in glyph processing is that the head triangle is inserted into the glyph
string before the letter mark. This is done with a one-to-many substitution in the <ccmp> layout
feature, and the shape of the triangle deployed depends on the letter mark.

	 �𑩜𑩜
11A5C

/ soTriangleA / soKa /

A subjoiner plus letter sequence is resolved to a subscript letter glyph using the <blwf> feature.
Note that this triggers a contextual substitution of the base letter in the <pres> feature, activating
a vertically shortened form; this is a behaviour of a small number of Soyombo letters.

	 ���
11A5C 11A97 11A71

/ soTriangleA / soKa.head / soPha.sub /

At this stage, I insert the righthand bar component of the frame. This is actually done in a series
of contextually controlled substitutions in the <rclt> feature that address the length of the bar,
the shape of the top relative to the head triangle, and whether the bar is continuous or broken,
depending on the letters in the stack.

Note that the bar length lookups include both backwards and forwards context strings to
accommodate subscript vowels and syllable final consonants (not shown).

	 ����
11A5C 11A97 11A71

/ soTriangleA / soKa.head / soPha.sub / soRightbarA2 /

A vowel sign is added, in this instance a right-side -ai vowel sign.

	 ����𑩗𑩗
11A5C 11A97 11A71 11A58

/ soTriangleA / soKa.head / soPha.sub / soRightbarA2 / soSignAi /

And finally an anusvara nasalisation sign is added above the cluster, and we have completed glyph
processing for this cluster.

	 ����𑩗𑩗𑪔𑪔
11A5C 11A97 11A71 11A58 11A94

/ soTriangleA / soKa.head / soPha.sub / soRightbarA2 / soSignAi / soAnusvara /

The whole thing works because the only glyph in the whole sequence that has an advance
width (indicated by the orange rectangle) is the head triangle. Every other glyph is treated as
a combining mark, and most of these are directly anchored to that triangle in the GPOS <mark>
feature. The subscript letter glyph is anchored to the preceding letter glyph, but everything else is
positioned relative to the triangle. Since in some cases there are intervening glyphs between the
triangle and the mark to be anchored, processing requires careful filtering of mark groups in the
lookup flags.

In the GPOS <dist> feature, width is added to the right-side vowel mark (indicated by the blue
line) so that the whole cluster has an advance width that avoids collision with adjacent clusters or
punctuation. The <dist> feature can also be used to contextually kern clusters to each other based
on wider or narrower elements in the letter stack.

	 ����𑩗𑩗𑩗𑩗
11A5C 11A97 11A71 11A58 11A94

/ soTriangleA / soKa.head / soPha.sub / soRightbarA2 / soSignAi / soAnusvara /

Here is a sample of the font in use, recording the name of Soyombo’s inventor, Zanabazar. Note
that the length of the righthand bar in each cluster is consistent across the line, determined by
the deepest stack regardless of the depth of elements in the individual clusters. This is handled
automatically for the line in the <calt> feature by filtering mark groups and not processing base
glyphs in the lookup flags. This is very clever. Because line breaks terminate OpenType Layout
glyph runs, it’s only possible to automatically affect this kind of substitution at the line level, not
the page or document level; some form of user-controlled bar length selection will be necessary
for the latter.

It should be obvious from what has preceded that this is a font that is entirely dependent on
shaping support to display in a legible manner. If shaping is not available, the results are not even
minimally decipherable...

�𑩐𑩐𑩐𑩐𑩐𑪌𑪌�𑩫𑩫𑩫𑩫𑩫𑪏𑪏𑪏 �𑩜𑩜𑩜𑩜𑩜𑩜𑩜𑩜𑩜𑩜𑩜𑪌𑪌𑩛𑩛	�𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑪏𑪏𑪏
	 ön	 -	 dör	 ge	 -	 gēn	 za	 -	 na	 -	 ba	 -	 zar

This is perhaps better feedback that something has gone wrong than a less graphically drastic
display, such as sometimes leads to the publication of examples of unshaped Arabic or Indic text.

I hope it is clear that this test case represents just one way to make a Soyombo font. It is the way
that made most sense to me as I analysed the behaviour of the script and the kinds of graphical
dependencies within each cluster. It is a way that allowed me to reconcile how I came to think
about the writing system with how Anshuman’s proposed Unicode encoding thinks about it, as
translated through the predictable behaviour of the Universal Shaping Engine.

It’s worth noting that at no stage in the development of the Soyombo font did I have access to a
testing environment in which the Universal Shaping Engine was active. I built the font based on an
understanding of the generic cluster model and how the shaping engine works. When the font was
ready, Andrew installed it in his virtual machine, and it just worked.

�𑩐𑩐𑩐𑩐𑩐𑪌𑪌�𑩫𑩫𑩫𑩫𑩫𑪏𑪏𑪏 �𑩜𑩜𑩜𑩜𑩜𑩜𑩜𑩜𑩜𑩜𑩜𑪌𑪌𑩛𑩛	�𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑪏𑪏𑪏
	 ön	 -	 dör	 ge	 -	 gēn	 za	 -	 na	 -	 ba	 -	 zar

𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐𑩐 𑩛𑩛 𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑩿𑪏𑪏𑪏
splat!

Afterword & Acknowledgements

At the time of writing, documentation of the Universal Shaping Engine is being drafted. In order
to be universal not merely in the sense of supporting any new script added to Unicode but also
in enabling predictable and compatible font outcomes everywhere, the new layout model needs
to be implemented by software developers beyond Microsoft. There is an encouraging degree
of cooperation around OpenType Layout currently in evidence, as major software makers realise
that the period of competition to support the world’s major scripts has passed. There are still
outstanding compatibility issues from that period, but despite my usual caution I am optimistic
that the future will consist of better compatibility, increased predictability, and more freedom—
and more responsibility—for font developers.

As noted in the introduction to these slides, the average delay between proposal of a script to
Unicode and system support in software is currently eight years. Adding preliminary Soyombo
character properties to the Universal Shaping Engine, designing and building the test font, and
creating a test environment and Soyombo keyboard took about eight days.

With thanks to Andrew Glass and Ali Basit at Microsoft, and to Anshuman Pandey at the Script
Encoding Initiative. Please consider financially supporting the work of the Script Encoding
Initiative, which aims to have all the world’s scripts included in Unicode.

John Hudson, 11 November 2014

